Loading…

Nonlinear Identification With Local Model Networks Using GTLS Techniques and Equality Constraints

Local model networks approximate a nonlinear system through multiple local models fitted within a partition space. The main advantage of this approach is that the identification of complex nonlinear processes is alleviated by the integration of structured knowledge about the process. This paper exte...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2011-09, Vol.22 (9), p.1406-1418
Main Authors: Hametner, C., Jakubek, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-7364f806018fe0ddf26b3e5673ece6ad4118567d8fa28a40bfdb078f7efa04173
cites cdi_FETCH-LOGICAL-c440t-7364f806018fe0ddf26b3e5673ece6ad4118567d8fa28a40bfdb078f7efa04173
container_end_page 1418
container_issue 9
container_start_page 1406
container_title IEEE transaction on neural networks and learning systems
container_volume 22
creator Hametner, C.
Jakubek, S.
description Local model networks approximate a nonlinear system through multiple local models fitted within a partition space. The main advantage of this approach is that the identification of complex nonlinear processes is alleviated by the integration of structured knowledge about the process. This paper extends these concepts by the integration of quantitative process knowledge into the identification procedure. Quantitative knowledge describes explicit dependences between inputs and outputs and is integrated in the parameter estimation process by means of equality constraints. For this purpose, a constrained generalized total least squares algorithm for local parameter estimation is presented. Furthermore, the problem of proper integration of constraints in the partitioning process is treated where an expectation-maximization procedure is combined with constrained parameter estimation. The benefits and the applicability of the proposed concepts are demonstrated by means of two illustrative examples and a practical application using real measurement data.
doi_str_mv 10.1109/TNN.2011.2159309
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNN_2011_2159309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5958611</ieee_id><sourcerecordid>1010915601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-7364f806018fe0ddf26b3e5673ece6ad4118567d8fa28a40bfdb078f7efa04173</originalsourceid><addsrcrecordid>eNqFkdFrFDEQhxdRbK2-C4IEQfRlz5ndZJM8lqOthfN88IqPS253YlP3kjbZRfrfN8udFXzQpyTkm9_M8BXFa4QFIuhPm_V6UQHiokKha9BPimPUHEsAXT_Nd-Ci1FUlj4oXKd0AIBfQPC-OKpRKoVLHhVkHPzhPJrLLnvzorOvM6IJn3914zVahMwP7Enoa2JrGXyH-TOwqOf-DXWxW39iGumvv7iZKzPiend1NZnDjPVsGn8ZonB_Ty-KZNUOiV4fzpLg6P9ssP5errxeXy9NV2XEOYynrhlsFDaCyBH1vq2Zbk2hkTR01pueIKr96ZU2lDIet7bcglZVkDXCU9UnxYZ97G8M80NjuXOpoGIynMKVWo9Y1b_T_SaWkACH5TH78J4mQLaDIQ2f03V_oTZiizxvnzhnIe4kMwR7qYkgpkm1vo9uZeJ-T2tlom422s9H2YDSXvD3kTtsd9Y8FvxVm4P0BMCnLstH4zqU_HBd1JfXc-82ec0T0-C20UA1i_QCvo7Ak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916010185</pqid></control><display><type>article</type><title>Nonlinear Identification With Local Model Networks Using GTLS Techniques and Equality Constraints</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hametner, C. ; Jakubek, S.</creator><creatorcontrib>Hametner, C. ; Jakubek, S.</creatorcontrib><description>Local model networks approximate a nonlinear system through multiple local models fitted within a partition space. The main advantage of this approach is that the identification of complex nonlinear processes is alleviated by the integration of structured knowledge about the process. This paper extends these concepts by the integration of quantitative process knowledge into the identification procedure. Quantitative knowledge describes explicit dependences between inputs and outputs and is integrated in the parameter estimation process by means of equality constraints. For this purpose, a constrained generalized total least squares algorithm for local parameter estimation is presented. Furthermore, the problem of proper integration of constraints in the partitioning process is treated where an expectation-maximization procedure is combined with constrained parameter estimation. The benefits and the applicability of the proposed concepts are demonstrated by means of two illustrative examples and a practical application using real measurement data.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2011.2159309</identifier><identifier>PMID: 21788188</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Artificial Intelligence ; Computer science; control theory; systems ; Constraints ; Eigenvalues and eigenfunctions ; Equality constraints ; Exact sciences and technology ; generalized total least squares ; Humans ; Image reconstruction ; Information systems. Data bases ; Least squares method ; Least-Squares Analysis ; local model network ; Mathematical models ; Memory organisation. Data processing ; Models, Theoretical ; Networks ; Neural networks ; Noise ; Noise measurement ; Nonlinear Dynamics ; nonlinear system identification ; Nonlinearity ; Optimization ; Parameter estimation ; Partitioning algorithms ; Software ; Studies</subject><ispartof>IEEE transaction on neural networks and learning systems, 2011-09, Vol.22 (9), p.1406-1418</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-7364f806018fe0ddf26b3e5673ece6ad4118567d8fa28a40bfdb078f7efa04173</citedby><cites>FETCH-LOGICAL-c440t-7364f806018fe0ddf26b3e5673ece6ad4118567d8fa28a40bfdb078f7efa04173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5958611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24532795$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21788188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hametner, C.</creatorcontrib><creatorcontrib>Jakubek, S.</creatorcontrib><title>Nonlinear Identification With Local Model Networks Using GTLS Techniques and Equality Constraints</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Local model networks approximate a nonlinear system through multiple local models fitted within a partition space. The main advantage of this approach is that the identification of complex nonlinear processes is alleviated by the integration of structured knowledge about the process. This paper extends these concepts by the integration of quantitative process knowledge into the identification procedure. Quantitative knowledge describes explicit dependences between inputs and outputs and is integrated in the parameter estimation process by means of equality constraints. For this purpose, a constrained generalized total least squares algorithm for local parameter estimation is presented. Furthermore, the problem of proper integration of constraints in the partitioning process is treated where an expectation-maximization procedure is combined with constrained parameter estimation. The benefits and the applicability of the proposed concepts are demonstrated by means of two illustrative examples and a practical application using real measurement data.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Constraints</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equality constraints</subject><subject>Exact sciences and technology</subject><subject>generalized total least squares</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Information systems. Data bases</subject><subject>Least squares method</subject><subject>Least-Squares Analysis</subject><subject>local model network</subject><subject>Mathematical models</subject><subject>Memory organisation. Data processing</subject><subject>Models, Theoretical</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Nonlinear Dynamics</subject><subject>nonlinear system identification</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Partitioning algorithms</subject><subject>Software</subject><subject>Studies</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkdFrFDEQhxdRbK2-C4IEQfRlz5ndZJM8lqOthfN88IqPS253YlP3kjbZRfrfN8udFXzQpyTkm9_M8BXFa4QFIuhPm_V6UQHiokKha9BPimPUHEsAXT_Nd-Ci1FUlj4oXKd0AIBfQPC-OKpRKoVLHhVkHPzhPJrLLnvzorOvM6IJn3914zVahMwP7Enoa2JrGXyH-TOwqOf-DXWxW39iGumvv7iZKzPiend1NZnDjPVsGn8ZonB_Ty-KZNUOiV4fzpLg6P9ssP5errxeXy9NV2XEOYynrhlsFDaCyBH1vq2Zbk2hkTR01pueIKr96ZU2lDIet7bcglZVkDXCU9UnxYZ97G8M80NjuXOpoGIynMKVWo9Y1b_T_SaWkACH5TH78J4mQLaDIQ2f03V_oTZiizxvnzhnIe4kMwR7qYkgpkm1vo9uZeJ-T2tlom422s9H2YDSXvD3kTtsd9Y8FvxVm4P0BMCnLstH4zqU_HBd1JfXc-82ec0T0-C20UA1i_QCvo7Ak</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Hametner, C.</creator><creator>Jakubek, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20110901</creationdate><title>Nonlinear Identification With Local Model Networks Using GTLS Techniques and Equality Constraints</title><author>Hametner, C. ; Jakubek, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-7364f806018fe0ddf26b3e5673ece6ad4118567d8fa28a40bfdb078f7efa04173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Constraints</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equality constraints</topic><topic>Exact sciences and technology</topic><topic>generalized total least squares</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Information systems. Data bases</topic><topic>Least squares method</topic><topic>Least-Squares Analysis</topic><topic>local model network</topic><topic>Mathematical models</topic><topic>Memory organisation. Data processing</topic><topic>Models, Theoretical</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Nonlinear Dynamics</topic><topic>nonlinear system identification</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Partitioning algorithms</topic><topic>Software</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Hametner, C.</creatorcontrib><creatorcontrib>Jakubek, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hametner, C.</au><au>Jakubek, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Identification With Local Model Networks Using GTLS Techniques and Equality Constraints</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>22</volume><issue>9</issue><spage>1406</spage><epage>1418</epage><pages>1406-1418</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>Local model networks approximate a nonlinear system through multiple local models fitted within a partition space. The main advantage of this approach is that the identification of complex nonlinear processes is alleviated by the integration of structured knowledge about the process. This paper extends these concepts by the integration of quantitative process knowledge into the identification procedure. Quantitative knowledge describes explicit dependences between inputs and outputs and is integrated in the parameter estimation process by means of equality constraints. For this purpose, a constrained generalized total least squares algorithm for local parameter estimation is presented. Furthermore, the problem of proper integration of constraints in the partitioning process is treated where an expectation-maximization procedure is combined with constrained parameter estimation. The benefits and the applicability of the proposed concepts are demonstrated by means of two illustrative examples and a practical application using real measurement data.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21788188</pmid><doi>10.1109/TNN.2011.2159309</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2011-09, Vol.22 (9), p.1406-1418
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNN_2011_2159309
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Approximation
Artificial Intelligence
Computer science
control theory
systems
Constraints
Eigenvalues and eigenfunctions
Equality constraints
Exact sciences and technology
generalized total least squares
Humans
Image reconstruction
Information systems. Data bases
Least squares method
Least-Squares Analysis
local model network
Mathematical models
Memory organisation. Data processing
Models, Theoretical
Networks
Neural networks
Noise
Noise measurement
Nonlinear Dynamics
nonlinear system identification
Nonlinearity
Optimization
Parameter estimation
Partitioning algorithms
Software
Studies
title Nonlinear Identification With Local Model Networks Using GTLS Techniques and Equality Constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Identification%20With%20Local%20Model%20Networks%20Using%20GTLS%20Techniques%20and%20Equality%20Constraints&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Hametner,%20C.&rft.date=2011-09-01&rft.volume=22&rft.issue=9&rft.spage=1406&rft.epage=1418&rft.pages=1406-1418&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2011.2159309&rft_dat=%3Cproquest_cross%3E1010915601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-7364f806018fe0ddf26b3e5673ece6ad4118567d8fa28a40bfdb078f7efa04173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916010185&rft_id=info:pmid/21788188&rft_ieee_id=5958611&rfr_iscdi=true