Loading…

The Cross-Evaluation of Machine Learning-Based Network Intrusion Detection Systems

Enhancing Network Intrusion Detection Systems (NIDS) with supervised Machine Learning (ML) is tough. ML-NIDS must be trained and evaluated, operations requiring data where benign and malicious samples are clearly labeled. Such labels demand costly expert knowledge, resulting in a lack of real deploy...

Full description

Saved in:
Bibliographic Details
Published in:IEEE eTransactions on network and service management 2022-12, Vol.19 (4), p.5152-5169
Main Authors: Apruzzese, Giovanni, Pajola, Luca, Conti, Mauro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enhancing Network Intrusion Detection Systems (NIDS) with supervised Machine Learning (ML) is tough. ML-NIDS must be trained and evaluated, operations requiring data where benign and malicious samples are clearly labeled. Such labels demand costly expert knowledge, resulting in a lack of real deployments, as well as on papers always relying on the same outdated data. The situation improved recently, as some efforts disclosed their labeled datasets. However, most past works used such datasets just as a 'yet another' testbed, overlooking the added potential provided by such availability. In contrast, we promote using such existing labeled data to cross-evaluate ML-NIDS. Such approach received only limited attention and, due to its complexity, requires a dedicated treatment. We hence propose the first cross-evaluation model. Our model highlights the broader range of realistic use-cases that can be assessed via cross-evaluations, allowing the discovery of still unknown qualities of state-of-the-art ML-NIDS. For instance, their detection surface can be extended-at no additional labeling cost. However, conducting such cross-evaluations is challenging. Hence, we propose the first framework, XeNIDS, for reliable cross-evaluations based on Network Flows. By using XeNIDS on six well-known datasets, we demonstrate the concealed potential, but also the risks, of cross-evaluations of ML-NIDS.
ISSN:1932-4537
1932-4537
DOI:10.1109/TNSM.2022.3157344