Loading…

Detection of movement-related patterns in ongoing single-channel electrocorticogram

Adaptive autoregressive parameters and a linear classifier were used to detect movement related desynchronization and synchronization patterns in single-channel electrocorticogram (ECoG) obtained from implanted electrode grids. The best classification accuracies found had more than 90% hits and less...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2003-09, Vol.11 (3), p.276-281
Main Authors: Graimann, B., Huggins, J.E., Schlogl, A., Levine, S.P., Pfurtscheller, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2480-b900ab3c0dd0d806593a45087f2621ef62e48c0c2f799b2c3b747e31529bd0d63
cites cdi_FETCH-LOGICAL-c2480-b900ab3c0dd0d806593a45087f2621ef62e48c0c2f799b2c3b747e31529bd0d63
container_end_page 281
container_issue 3
container_start_page 276
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 11
creator Graimann, B.
Huggins, J.E.
Schlogl, A.
Levine, S.P.
Pfurtscheller, G.
description Adaptive autoregressive parameters and a linear classifier were used to detect movement related desynchronization and synchronization patterns in single-channel electrocorticogram (ECoG) obtained from implanted electrode grids. The best classification accuracies found had more than 90% hits and less than 10% false positives. The findings show that the detection of event-related desynchronization and synchronization in ECoG data can be used to reliably provide switch control directly by the brain and is therefore very suitable as the basis of a direct brain interface.
doi_str_mv 10.1109/TNSRE.2003.816863
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSRE_2003_816863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1231237</ieee_id><sourcerecordid>883043620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2480-b900ab3c0dd0d806593a45087f2621ef62e48c0c2f799b2c3b747e31529bd0d63</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVoSNJNHqD0YnpoT96ORrYkH8tm2wRCAk1yFrJ2vPViS1vJG8jbV5stBHIIDDMD8_0zEj9jnzjMOYfm-8Pt_e_lHAHEXHOppThiZ7yudQnI4cO-F1VZCYRT9jGlDQBXslYn7JRXNdeq4Wfs_pImclMffBG6YgxPNJKfykiDnWhVbO00UfSp6PPcr0Pv10XKaaDS_bHe01DQkPUxuBCn3oV1tOM5O-7skOjif52xx5_Lh8VVeXP363rx46Z0WGko2wbAtsLBagUrDbJuhK1q0KpDiZw6iVRpBw471TQtOtGqSpHgNTZtVkgxY98Oe7cx_N1RmszYJ0fDYD2FXTJaC6iERMjk13dJ1KikAMzglzfgJuyiz78wDSKq_L79XX6AXAwpRerMNvajjc-Gg9kbY16MMXtjzMGYrPl80PRE9MqjyKHEP0I5h4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922274506</pqid></control><display><type>article</type><title>Detection of movement-related patterns in ongoing single-channel electrocorticogram</title><source>Alma/SFX Local Collection</source><creator>Graimann, B. ; Huggins, J.E. ; Schlogl, A. ; Levine, S.P. ; Pfurtscheller, G.</creator><creatorcontrib>Graimann, B. ; Huggins, J.E. ; Schlogl, A. ; Levine, S.P. ; Pfurtscheller, G.</creatorcontrib><description>Adaptive autoregressive parameters and a linear classifier were used to detect movement related desynchronization and synchronization patterns in single-channel electrocorticogram (ECoG) obtained from implanted electrode grids. The best classification accuracies found had more than 90% hits and less than 10% false positives. The findings show that the detection of event-related desynchronization and synchronization in ECoG data can be used to reliably provide switch control directly by the brain and is therefore very suitable as the basis of a direct brain interface.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2003.816863</identifier><identifier>PMID: 14518791</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical engineering ; Biomedical informatics ; Biomedical measurements ; Brain computer interfaces ; Electrodes ; Electroencephalography ; Enterprise resource planning ; Genetic algorithms ; Linear discriminant analysis ; Switches</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2003-09, Vol.11 (3), p.276-281</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2480-b900ab3c0dd0d806593a45087f2621ef62e48c0c2f799b2c3b747e31529bd0d63</citedby><cites>FETCH-LOGICAL-c2480-b900ab3c0dd0d806593a45087f2621ef62e48c0c2f799b2c3b747e31529bd0d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Graimann, B.</creatorcontrib><creatorcontrib>Huggins, J.E.</creatorcontrib><creatorcontrib>Schlogl, A.</creatorcontrib><creatorcontrib>Levine, S.P.</creatorcontrib><creatorcontrib>Pfurtscheller, G.</creatorcontrib><title>Detection of movement-related patterns in ongoing single-channel electrocorticogram</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description>Adaptive autoregressive parameters and a linear classifier were used to detect movement related desynchronization and synchronization patterns in single-channel electrocorticogram (ECoG) obtained from implanted electrode grids. The best classification accuracies found had more than 90% hits and less than 10% false positives. The findings show that the detection of event-related desynchronization and synchronization in ECoG data can be used to reliably provide switch control directly by the brain and is therefore very suitable as the basis of a direct brain interface.</description><subject>Biomedical engineering</subject><subject>Biomedical informatics</subject><subject>Biomedical measurements</subject><subject>Brain computer interfaces</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Enterprise resource planning</subject><subject>Genetic algorithms</subject><subject>Linear discriminant analysis</subject><subject>Switches</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhkVoSNJNHqD0YnpoT96ORrYkH8tm2wRCAk1yFrJ2vPViS1vJG8jbV5stBHIIDDMD8_0zEj9jnzjMOYfm-8Pt_e_lHAHEXHOppThiZ7yudQnI4cO-F1VZCYRT9jGlDQBXslYn7JRXNdeq4Wfs_pImclMffBG6YgxPNJKfykiDnWhVbO00UfSp6PPcr0Pv10XKaaDS_bHe01DQkPUxuBCn3oV1tOM5O-7skOjif52xx5_Lh8VVeXP363rx46Z0WGko2wbAtsLBagUrDbJuhK1q0KpDiZw6iVRpBw471TQtOtGqSpHgNTZtVkgxY98Oe7cx_N1RmszYJ0fDYD2FXTJaC6iERMjk13dJ1KikAMzglzfgJuyiz78wDSKq_L79XX6AXAwpRerMNvajjc-Gg9kbY16MMXtjzMGYrPl80PRE9MqjyKHEP0I5h4Q</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Graimann, B.</creator><creator>Huggins, J.E.</creator><creator>Schlogl, A.</creator><creator>Levine, S.P.</creator><creator>Pfurtscheller, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope></search><sort><creationdate>20030901</creationdate><title>Detection of movement-related patterns in ongoing single-channel electrocorticogram</title><author>Graimann, B. ; Huggins, J.E. ; Schlogl, A. ; Levine, S.P. ; Pfurtscheller, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2480-b900ab3c0dd0d806593a45087f2621ef62e48c0c2f799b2c3b747e31529bd0d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biomedical engineering</topic><topic>Biomedical informatics</topic><topic>Biomedical measurements</topic><topic>Brain computer interfaces</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Enterprise resource planning</topic><topic>Genetic algorithms</topic><topic>Linear discriminant analysis</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graimann, B.</creatorcontrib><creatorcontrib>Huggins, J.E.</creatorcontrib><creatorcontrib>Schlogl, A.</creatorcontrib><creatorcontrib>Levine, S.P.</creatorcontrib><creatorcontrib>Pfurtscheller, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graimann, B.</au><au>Huggins, J.E.</au><au>Schlogl, A.</au><au>Levine, S.P.</au><au>Pfurtscheller, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of movement-related patterns in ongoing single-channel electrocorticogram</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2003-09-01</date><risdate>2003</risdate><volume>11</volume><issue>3</issue><spage>276</spage><epage>281</epage><pages>276-281</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Adaptive autoregressive parameters and a linear classifier were used to detect movement related desynchronization and synchronization patterns in single-channel electrocorticogram (ECoG) obtained from implanted electrode grids. The best classification accuracies found had more than 90% hits and less than 10% false positives. The findings show that the detection of event-related desynchronization and synchronization in ECoG data can be used to reliably provide switch control directly by the brain and is therefore very suitable as the basis of a direct brain interface.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>14518791</pmid><doi>10.1109/TNSRE.2003.816863</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2003-09, Vol.11 (3), p.276-281
issn 1534-4320
1558-0210
language eng
recordid cdi_crossref_primary_10_1109_TNSRE_2003_816863
source Alma/SFX Local Collection
subjects Biomedical engineering
Biomedical informatics
Biomedical measurements
Brain computer interfaces
Electrodes
Electroencephalography
Enterprise resource planning
Genetic algorithms
Linear discriminant analysis
Switches
title Detection of movement-related patterns in ongoing single-channel electrocorticogram
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20movement-related%20patterns%20in%20ongoing%20single-channel%20electrocorticogram&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Graimann,%20B.&rft.date=2003-09-01&rft.volume=11&rft.issue=3&rft.spage=276&rft.epage=281&rft.pages=276-281&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2003.816863&rft_dat=%3Cproquest_cross%3E883043620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2480-b900ab3c0dd0d806593a45087f2621ef62e48c0c2f799b2c3b747e31529bd0d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922274506&rft_id=info:pmid/14518791&rft_ieee_id=1231237&rfr_iscdi=true