Loading…

Applications of Magnetic Scanning to High Current Implantation

High current ion implantation systems employing beams of 75As+ at 10 mA or more at energies of the order of 100 keV depend upon electron space charge neutralization to preserve the ion optical quality of the beam during transport from the source to the wafer implant location. Time varying magnetic f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 1981-04, Vol.28 (2), p.1747-1750
Main Authors: Hanley, P. R., Ehrlich, C. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-d95c145e3b76ec7bbf743d9d4fbec01f8086ecacaa1d891267aff3a7dee51eb43
cites cdi_FETCH-LOGICAL-c261t-d95c145e3b76ec7bbf743d9d4fbec01f8086ecacaa1d891267aff3a7dee51eb43
container_end_page 1750
container_issue 2
container_start_page 1747
container_title IEEE transactions on nuclear science
container_volume 28
creator Hanley, P. R.
Ehrlich, C. D.
description High current ion implantation systems employing beams of 75As+ at 10 mA or more at energies of the order of 100 keV depend upon electron space charge neutralization to preserve the ion optical quality of the beam during transport from the source to the wafer implant location. Time varying magnetic fields have been used to deflect these beams over lateral dimensions up to 300 mm at frequencies of the order of 0.1 Hz, without affecting low energy electrons trapped in the potential well of the beam, and without significant modification of the ion beam shape. Hybrid magnetic-mechanical scanning of high current ion beams has been shown to be capable of averaging the implanted dose with uniformities as good as 2σ < 1% across 100 mm diameter silicon wafers mounted on an 0.8 meter disc rotating in vacuum at 1000 r.p.m. The physical basis of angle corrected hybrid magnetic-mechanical scanning is analyzed leading to a calculated relationship for the deflection (X) dependent on the scanner magnetic field (Bs). This functional dependence X = f(Bs) has also been measured using the disc as a rotating beam profile monitor. From the measured dependence, implant dose uniformity across a long scan can be obtained as shown by sheet resistance maps of ion implanted wafers. The dependence of dose uniformity on the number of scans has also been evaluated, and data is presented illustrating uniformity 2σ < 2% can be achieved using a single scan across the wafer.
doi_str_mv 10.1109/TNS.1981.4331512
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_1981_4331512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4331512</ieee_id><sourcerecordid>10_1109_TNS_1981_4331512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-d95c145e3b76ec7bbf743d9d4fbec01f8086ecacaa1d891267aff3a7dee51eb43</originalsourceid><addsrcrecordid>eNo9j8FOwzAMhiMEEmVwR-KSF2iJ26RJLkhTBWzSgMPGuUpTpwR1adWWA29PxwYny_792foIuQWWADB9v3vdJqAVJDzLQEB6RiIQQsUgpDonEWOgYs21viRX4_g5t1wwEZGHZd-33prJd2GknaMvpgk4eUu31oTgQ0Onjq5880GLr2HAMNH1vm9NmH6Ra3LhTDvizakuyPvT465YxZu353Wx3MQ2zWGKay3s_BCzSuZoZVU5ybNa19xVaBk4xdQ8N9YYqJWGNJfGuczIGlEAVjxbEHa8a4duHAd0ZT_4vRm-S2Dlwb-c_cuDf3nyn5G7I-IR8X_9L_0BhlpX_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Applications of Magnetic Scanning to High Current Implantation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hanley, P. R. ; Ehrlich, C. D.</creator><creatorcontrib>Hanley, P. R. ; Ehrlich, C. D.</creatorcontrib><description>High current ion implantation systems employing beams of 75As+ at 10 mA or more at energies of the order of 100 keV depend upon electron space charge neutralization to preserve the ion optical quality of the beam during transport from the source to the wafer implant location. Time varying magnetic fields have been used to deflect these beams over lateral dimensions up to 300 mm at frequencies of the order of 0.1 Hz, without affecting low energy electrons trapped in the potential well of the beam, and without significant modification of the ion beam shape. Hybrid magnetic-mechanical scanning of high current ion beams has been shown to be capable of averaging the implanted dose with uniformities as good as 2σ &lt; 1% across 100 mm diameter silicon wafers mounted on an 0.8 meter disc rotating in vacuum at 1000 r.p.m. The physical basis of angle corrected hybrid magnetic-mechanical scanning is analyzed leading to a calculated relationship for the deflection (X) dependent on the scanner magnetic field (Bs). This functional dependence X = f(Bs) has also been measured using the disc as a rotating beam profile monitor. From the measured dependence, implant dose uniformity across a long scan can be obtained as shown by sheet resistance maps of ion implanted wafers. The dependence of dose uniformity on the number of scans has also been evaluated, and data is presented illustrating uniformity 2σ &lt; 2% can be achieved using a single scan across the wafer.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.1981.4331512</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrical resistance measurement ; Electron beams ; Electron optics ; Implants ; Ion beams ; Ion implantation ; Magnetic field measurement ; Magnetic fields ; Particle beam optics ; Space charge</subject><ispartof>IEEE transactions on nuclear science, 1981-04, Vol.28 (2), p.1747-1750</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-d95c145e3b76ec7bbf743d9d4fbec01f8086ecacaa1d891267aff3a7dee51eb43</citedby><cites>FETCH-LOGICAL-c261t-d95c145e3b76ec7bbf743d9d4fbec01f8086ecacaa1d891267aff3a7dee51eb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4331512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Hanley, P. R.</creatorcontrib><creatorcontrib>Ehrlich, C. D.</creatorcontrib><title>Applications of Magnetic Scanning to High Current Implantation</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>High current ion implantation systems employing beams of 75As+ at 10 mA or more at energies of the order of 100 keV depend upon electron space charge neutralization to preserve the ion optical quality of the beam during transport from the source to the wafer implant location. Time varying magnetic fields have been used to deflect these beams over lateral dimensions up to 300 mm at frequencies of the order of 0.1 Hz, without affecting low energy electrons trapped in the potential well of the beam, and without significant modification of the ion beam shape. Hybrid magnetic-mechanical scanning of high current ion beams has been shown to be capable of averaging the implanted dose with uniformities as good as 2σ &lt; 1% across 100 mm diameter silicon wafers mounted on an 0.8 meter disc rotating in vacuum at 1000 r.p.m. The physical basis of angle corrected hybrid magnetic-mechanical scanning is analyzed leading to a calculated relationship for the deflection (X) dependent on the scanner magnetic field (Bs). This functional dependence X = f(Bs) has also been measured using the disc as a rotating beam profile monitor. From the measured dependence, implant dose uniformity across a long scan can be obtained as shown by sheet resistance maps of ion implanted wafers. The dependence of dose uniformity on the number of scans has also been evaluated, and data is presented illustrating uniformity 2σ &lt; 2% can be achieved using a single scan across the wafer.</description><subject>Electrical resistance measurement</subject><subject>Electron beams</subject><subject>Electron optics</subject><subject>Implants</subject><subject>Ion beams</subject><subject>Ion implantation</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Particle beam optics</subject><subject>Space charge</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNo9j8FOwzAMhiMEEmVwR-KSF2iJ26RJLkhTBWzSgMPGuUpTpwR1adWWA29PxwYny_792foIuQWWADB9v3vdJqAVJDzLQEB6RiIQQsUgpDonEWOgYs21viRX4_g5t1wwEZGHZd-33prJd2GknaMvpgk4eUu31oTgQ0Onjq5880GLr2HAMNH1vm9NmH6Ra3LhTDvizakuyPvT465YxZu353Wx3MQ2zWGKay3s_BCzSuZoZVU5ybNa19xVaBk4xdQ8N9YYqJWGNJfGuczIGlEAVjxbEHa8a4duHAd0ZT_4vRm-S2Dlwb-c_cuDf3nyn5G7I-IR8X_9L_0BhlpX_g</recordid><startdate>198104</startdate><enddate>198104</enddate><creator>Hanley, P. R.</creator><creator>Ehrlich, C. D.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198104</creationdate><title>Applications of Magnetic Scanning to High Current Implantation</title><author>Hanley, P. R. ; Ehrlich, C. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-d95c145e3b76ec7bbf743d9d4fbec01f8086ecacaa1d891267aff3a7dee51eb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Electrical resistance measurement</topic><topic>Electron beams</topic><topic>Electron optics</topic><topic>Implants</topic><topic>Ion beams</topic><topic>Ion implantation</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Particle beam optics</topic><topic>Space charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanley, P. R.</creatorcontrib><creatorcontrib>Ehrlich, C. D.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanley, P. R.</au><au>Ehrlich, C. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Magnetic Scanning to High Current Implantation</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1981-04</date><risdate>1981</risdate><volume>28</volume><issue>2</issue><spage>1747</spage><epage>1750</epage><pages>1747-1750</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>High current ion implantation systems employing beams of 75As+ at 10 mA or more at energies of the order of 100 keV depend upon electron space charge neutralization to preserve the ion optical quality of the beam during transport from the source to the wafer implant location. Time varying magnetic fields have been used to deflect these beams over lateral dimensions up to 300 mm at frequencies of the order of 0.1 Hz, without affecting low energy electrons trapped in the potential well of the beam, and without significant modification of the ion beam shape. Hybrid magnetic-mechanical scanning of high current ion beams has been shown to be capable of averaging the implanted dose with uniformities as good as 2σ &lt; 1% across 100 mm diameter silicon wafers mounted on an 0.8 meter disc rotating in vacuum at 1000 r.p.m. The physical basis of angle corrected hybrid magnetic-mechanical scanning is analyzed leading to a calculated relationship for the deflection (X) dependent on the scanner magnetic field (Bs). This functional dependence X = f(Bs) has also been measured using the disc as a rotating beam profile monitor. From the measured dependence, implant dose uniformity across a long scan can be obtained as shown by sheet resistance maps of ion implanted wafers. The dependence of dose uniformity on the number of scans has also been evaluated, and data is presented illustrating uniformity 2σ &lt; 2% can be achieved using a single scan across the wafer.</abstract><pub>IEEE</pub><doi>10.1109/TNS.1981.4331512</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 1981-04, Vol.28 (2), p.1747-1750
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_1981_4331512
source IEEE Electronic Library (IEL) Journals
subjects Electrical resistance measurement
Electron beams
Electron optics
Implants
Ion beams
Ion implantation
Magnetic field measurement
Magnetic fields
Particle beam optics
Space charge
title Applications of Magnetic Scanning to High Current Implantation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Magnetic%20Scanning%20to%20High%20Current%20Implantation&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Hanley,%20P.%20R.&rft.date=1981-04&rft.volume=28&rft.issue=2&rft.spage=1747&rft.epage=1750&rft.pages=1747-1750&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.1981.4331512&rft_dat=%3Ccrossref_ieee_%3E10_1109_TNS_1981_4331512%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-d95c145e3b76ec7bbf743d9d4fbec01f8086ecacaa1d891267aff3a7dee51eb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4331512&rfr_iscdi=true