Loading…

Preliminary studies of discrete tomography in neutron imaging

Discrete tomography (DT) is a new technique to reconstruct discrete images from their projections (like neutron images). The reconstruction methods in DT are different from the conventional ones, because the created images may contain only a few numbers of given discrete values. One of the main reas...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2005-02, Vol.52 (1), p.380-385
Main Authors: Kuba, A., Rusko, L., Rodek, L., Kiss, Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Discrete tomography (DT) is a new technique to reconstruct discrete images from their projections (like neutron images). The reconstruction methods in DT are different from the conventional ones, because the created images may contain only a few numbers of given discrete values. One of the main reasons to apply DT is that hopefully we need only a few numbers of projections. In many applications we have a situation where we know the material components of the object to be studied, that is, we know the discrete values of the image to be reconstructed. Using discreteness and some a priori information we can apply several DT methods in neutron imaging. Most of the DT reconstruction methods are reducing the problem to an optimization task. We tried two such methods on software and physical phantoms. In these experiments we investigated the effects of the following parameters: number of projections, noise levels, and complexity of the object to be reconstructed. We also developed a software system, called DIRECT, for testing different DT methods, to compare them and to present the reconstructed objects.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2005.843657