Loading…

Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET

Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitte...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2014-02, Vol.61 (1), p.142-153
Main Authors: Harzmann, S., Braun, F., Zakhnini, A., Weber, W. A., Pietrzyk, U., Mix, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083
cites cdi_FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083
container_end_page 153
container_issue 1
container_start_page 142
container_title IEEE transactions on nuclear science
container_volume 61
creator Harzmann, S.
Braun, F.
Zakhnini, A.
Weber, W. A.
Pietrzyk, U.
Mix, M.
description Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution.
doi_str_mv 10.1109/TNS.2013.2293914
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2013_2293914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6728667</ieee_id><sourcerecordid>3238383351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083</originalsourceid><addsrcrecordid>eNpdkD1rHDEQhkWIIRcnfSCNII2bvWj0rdIc_jgwibHPRSqh1c6GNburs7RX-N9bx5kUqYZhnneYeQj5BmwNwNzP3a_HNWcg1pw74UB-ICtQyjagjP1IVoyBbZx07hP5XMpzbaViakX-bKf9iBPOS1iGNNPU000oMXRIb8I0BRrmjt6nMiy5Th_C_BfpJuWM8YgX2qdMtw1wSR-nMI70ch5qpfdXuy_krA9jwa_v9Zw8XV_tNrfN3e-b7ebyromCy6WRynElQcS2E9Gi6Wzb2mB1xNA6xdooQDvTS-66NhhAGQ1D6I20wKNlVpyTi9PefU4vByyLn4YScRzDjOlQPGhjnHZWQ0V__Ic-p0Oe63UeFJNaaKVFpdiJijmVkrH3-1yfyq8emD-69tW1P7r2765r5PspMiDiP1wbbrU24g2adng1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504636563</pqid></control><display><type>article</type><title>Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Harzmann, S. ; Braun, F. ; Zakhnini, A. ; Weber, W. A. ; Pietrzyk, U. ; Mix, M.</creator><creatorcontrib>Harzmann, S. ; Braun, F. ; Zakhnini, A. ; Weber, W. A. ; Pietrzyk, U. ; Mix, M.</creatorcontrib><description>Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2013.2293914</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Animals ; Cascade gamma coincidences ; Cascades ; Computer simulation ; Image reconstruction ; Image resolution ; Logic gates ; Monte Carlo simulations ; non-pure positron emitter ; Phantoms ; Positron emission ; Positron emission tomography ; positron emission tomography (PET) ; positron range ; Positrons ; Spatial resolution ; Tomography</subject><ispartof>IEEE transactions on nuclear science, 2014-02, Vol.61 (1), p.142-153</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083</citedby><cites>FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6728667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Harzmann, S.</creatorcontrib><creatorcontrib>Braun, F.</creatorcontrib><creatorcontrib>Zakhnini, A.</creatorcontrib><creatorcontrib>Weber, W. A.</creatorcontrib><creatorcontrib>Pietrzyk, U.</creatorcontrib><creatorcontrib>Mix, M.</creatorcontrib><title>Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Cascade gamma coincidences</subject><subject>Cascades</subject><subject>Computer simulation</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Logic gates</subject><subject>Monte Carlo simulations</subject><subject>non-pure positron emitter</subject><subject>Phantoms</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>positron emission tomography (PET)</subject><subject>positron range</subject><subject>Positrons</subject><subject>Spatial resolution</subject><subject>Tomography</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkD1rHDEQhkWIIRcnfSCNII2bvWj0rdIc_jgwibHPRSqh1c6GNburs7RX-N9bx5kUqYZhnneYeQj5BmwNwNzP3a_HNWcg1pw74UB-ICtQyjagjP1IVoyBbZx07hP5XMpzbaViakX-bKf9iBPOS1iGNNPU000oMXRIb8I0BRrmjt6nMiy5Th_C_BfpJuWM8YgX2qdMtw1wSR-nMI70ch5qpfdXuy_krA9jwa_v9Zw8XV_tNrfN3e-b7ebyromCy6WRynElQcS2E9Gi6Wzb2mB1xNA6xdooQDvTS-66NhhAGQ1D6I20wKNlVpyTi9PefU4vByyLn4YScRzDjOlQPGhjnHZWQ0V__Ic-p0Oe63UeFJNaaKVFpdiJijmVkrH3-1yfyq8emD-69tW1P7r2765r5PspMiDiP1wbbrU24g2adng1</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Harzmann, S.</creator><creator>Braun, F.</creator><creator>Zakhnini, A.</creator><creator>Weber, W. A.</creator><creator>Pietrzyk, U.</creator><creator>Mix, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20140201</creationdate><title>Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET</title><author>Harzmann, S. ; Braun, F. ; Zakhnini, A. ; Weber, W. A. ; Pietrzyk, U. ; Mix, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Cascade gamma coincidences</topic><topic>Cascades</topic><topic>Computer simulation</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Logic gates</topic><topic>Monte Carlo simulations</topic><topic>non-pure positron emitter</topic><topic>Phantoms</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>positron emission tomography (PET)</topic><topic>positron range</topic><topic>Positrons</topic><topic>Spatial resolution</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harzmann, S.</creatorcontrib><creatorcontrib>Braun, F.</creatorcontrib><creatorcontrib>Zakhnini, A.</creatorcontrib><creatorcontrib>Weber, W. A.</creatorcontrib><creatorcontrib>Pietrzyk, U.</creatorcontrib><creatorcontrib>Mix, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harzmann, S.</au><au>Braun, F.</au><au>Zakhnini, A.</au><au>Weber, W. A.</au><au>Pietrzyk, U.</au><au>Mix, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>61</volume><issue>1</issue><spage>142</spage><epage>153</epage><pages>142-153</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2013.2293914</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2014-02, Vol.61 (1), p.142-153
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2013_2293914
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Animals
Cascade gamma coincidences
Cascades
Computer simulation
Image reconstruction
Image resolution
Logic gates
Monte Carlo simulations
non-pure positron emitter
Phantoms
Positron emission
Positron emission tomography
positron emission tomography (PET)
positron range
Positrons
Spatial resolution
Tomography
title Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20Cascade%20Gamma%20and%20Positron%20Range%20Corrections%20for%20I-124%20Small%20Animal%20PET&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Harzmann,%20S.&rft.date=2014-02-01&rft.volume=61&rft.issue=1&rft.spage=142&rft.epage=153&rft.pages=142-153&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2013.2293914&rft_dat=%3Cproquest_cross%3E3238383351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1504636563&rft_id=info:pmid/&rft_ieee_id=6728667&rfr_iscdi=true