Loading…
Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET
Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitte...
Saved in:
Published in: | IEEE transactions on nuclear science 2014-02, Vol.61 (1), p.142-153 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083 |
container_end_page | 153 |
container_issue | 1 |
container_start_page | 142 |
container_title | IEEE transactions on nuclear science |
container_volume | 61 |
creator | Harzmann, S. Braun, F. Zakhnini, A. Weber, W. A. Pietrzyk, U. Mix, M. |
description | Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution. |
doi_str_mv | 10.1109/TNS.2013.2293914 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2013_2293914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6728667</ieee_id><sourcerecordid>3238383351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083</originalsourceid><addsrcrecordid>eNpdkD1rHDEQhkWIIRcnfSCNII2bvWj0rdIc_jgwibHPRSqh1c6GNburs7RX-N9bx5kUqYZhnneYeQj5BmwNwNzP3a_HNWcg1pw74UB-ICtQyjagjP1IVoyBbZx07hP5XMpzbaViakX-bKf9iBPOS1iGNNPU000oMXRIb8I0BRrmjt6nMiy5Th_C_BfpJuWM8YgX2qdMtw1wSR-nMI70ch5qpfdXuy_krA9jwa_v9Zw8XV_tNrfN3e-b7ebyromCy6WRynElQcS2E9Gi6Wzb2mB1xNA6xdooQDvTS-66NhhAGQ1D6I20wKNlVpyTi9PefU4vByyLn4YScRzDjOlQPGhjnHZWQ0V__Ic-p0Oe63UeFJNaaKVFpdiJijmVkrH3-1yfyq8emD-69tW1P7r2765r5PspMiDiP1wbbrU24g2adng1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504636563</pqid></control><display><type>article</type><title>Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Harzmann, S. ; Braun, F. ; Zakhnini, A. ; Weber, W. A. ; Pietrzyk, U. ; Mix, M.</creator><creatorcontrib>Harzmann, S. ; Braun, F. ; Zakhnini, A. ; Weber, W. A. ; Pietrzyk, U. ; Mix, M.</creatorcontrib><description>Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2013.2293914</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Animals ; Cascade gamma coincidences ; Cascades ; Computer simulation ; Image reconstruction ; Image resolution ; Logic gates ; Monte Carlo simulations ; non-pure positron emitter ; Phantoms ; Positron emission ; Positron emission tomography ; positron emission tomography (PET) ; positron range ; Positrons ; Spatial resolution ; Tomography</subject><ispartof>IEEE transactions on nuclear science, 2014-02, Vol.61 (1), p.142-153</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083</citedby><cites>FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6728667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Harzmann, S.</creatorcontrib><creatorcontrib>Braun, F.</creatorcontrib><creatorcontrib>Zakhnini, A.</creatorcontrib><creatorcontrib>Weber, W. A.</creatorcontrib><creatorcontrib>Pietrzyk, U.</creatorcontrib><creatorcontrib>Mix, M.</creatorcontrib><title>Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Cascade gamma coincidences</subject><subject>Cascades</subject><subject>Computer simulation</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Logic gates</subject><subject>Monte Carlo simulations</subject><subject>non-pure positron emitter</subject><subject>Phantoms</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>positron emission tomography (PET)</subject><subject>positron range</subject><subject>Positrons</subject><subject>Spatial resolution</subject><subject>Tomography</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkD1rHDEQhkWIIRcnfSCNII2bvWj0rdIc_jgwibHPRSqh1c6GNburs7RX-N9bx5kUqYZhnneYeQj5BmwNwNzP3a_HNWcg1pw74UB-ICtQyjagjP1IVoyBbZx07hP5XMpzbaViakX-bKf9iBPOS1iGNNPU000oMXRIb8I0BRrmjt6nMiy5Th_C_BfpJuWM8YgX2qdMtw1wSR-nMI70ch5qpfdXuy_krA9jwa_v9Zw8XV_tNrfN3e-b7ebyromCy6WRynElQcS2E9Gi6Wzb2mB1xNA6xdooQDvTS-66NhhAGQ1D6I20wKNlVpyTi9PefU4vByyLn4YScRzDjOlQPGhjnHZWQ0V__Ic-p0Oe63UeFJNaaKVFpdiJijmVkrH3-1yfyq8emD-69tW1P7r2765r5PspMiDiP1wbbrU24g2adng1</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Harzmann, S.</creator><creator>Braun, F.</creator><creator>Zakhnini, A.</creator><creator>Weber, W. A.</creator><creator>Pietrzyk, U.</creator><creator>Mix, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20140201</creationdate><title>Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET</title><author>Harzmann, S. ; Braun, F. ; Zakhnini, A. ; Weber, W. A. ; Pietrzyk, U. ; Mix, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Cascade gamma coincidences</topic><topic>Cascades</topic><topic>Computer simulation</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Logic gates</topic><topic>Monte Carlo simulations</topic><topic>non-pure positron emitter</topic><topic>Phantoms</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>positron emission tomography (PET)</topic><topic>positron range</topic><topic>Positrons</topic><topic>Spatial resolution</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harzmann, S.</creatorcontrib><creatorcontrib>Braun, F.</creatorcontrib><creatorcontrib>Zakhnini, A.</creatorcontrib><creatorcontrib>Weber, W. A.</creatorcontrib><creatorcontrib>Pietrzyk, U.</creatorcontrib><creatorcontrib>Mix, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harzmann, S.</au><au>Braun, F.</au><au>Zakhnini, A.</au><au>Weber, W. A.</au><au>Pietrzyk, U.</au><au>Mix, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>61</volume><issue>1</issue><spage>142</spage><epage>153</epage><pages>142-153</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2013.2293914</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2014-02, Vol.61 (1), p.142-153 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_2013_2293914 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Animals Cascade gamma coincidences Cascades Computer simulation Image reconstruction Image resolution Logic gates Monte Carlo simulations non-pure positron emitter Phantoms Positron emission Positron emission tomography positron emission tomography (PET) positron range Positrons Spatial resolution Tomography |
title | Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20Cascade%20Gamma%20and%20Positron%20Range%20Corrections%20for%20I-124%20Small%20Animal%20PET&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Harzmann,%20S.&rft.date=2014-02-01&rft.volume=61&rft.issue=1&rft.spage=142&rft.epage=153&rft.pages=142-153&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2013.2293914&rft_dat=%3Cproquest_cross%3E3238383351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-45925413cbd3c8e7d8bb8a86ceab950bc31697f429dba71e4c70e1f74812c8083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1504636563&rft_id=info:pmid/&rft_ieee_id=6728667&rfr_iscdi=true |