Loading…
Irradiation and Temperature Effects for a 32 nm RF Silicon-on-Insulator CMOS Process
The impacts of total ionizing dose (TID), temperature and RF stress on the DC and RF performance of a commercial 32 nm RF silicon-on-insulator CMOS technology are presented. Temperature dependence is the overwhelmingly dominant single factor affecting the DC and RF performance, with the combined eff...
Saved in:
Published in: | IEEE transactions on nuclear science 2014-12, Vol.61 (6), p.3037-3042 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The impacts of total ionizing dose (TID), temperature and RF stress on the DC and RF performance of a commercial 32 nm RF silicon-on-insulator CMOS technology are presented. Temperature dependence is the overwhelmingly dominant single factor affecting the DC and RF performance, with the combined effects of elevated temperature and TID showing the most pronounced degradation. The most significant effect due to TID is an increase in off-state leakage current. Key DC and RF parameters of this 32 nm RF process degrade less than those of an otherwise similar 45 nm RF SOI CMOS process. The implications of the combined TID and temperature response are discussed for low-power RF design. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2014.2360455 |