Loading…

Irradiation and Temperature Effects for a 32 nm RF Silicon-on-Insulator CMOS Process

The impacts of total ionizing dose (TID), temperature and RF stress on the DC and RF performance of a commercial 32 nm RF silicon-on-insulator CMOS technology are presented. Temperature dependence is the overwhelmingly dominant single factor affecting the DC and RF performance, with the combined eff...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2014-12, Vol.61 (6), p.3037-3042
Main Authors: Haeffner, T. D., Loveless, T. D., Zhang, E. X., Sternberg, A. L., Jagannathan, S., Schrimpf, R. D., Kauppila, J. S., Alles, M. L., Fleetwood, D. M., Massengill, L. W., Haddad, N. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-9abba0b21ce4852504eaacba8e1ed71fe2d10f0d32ef555be4f1b4f7af2fa833
cites cdi_FETCH-LOGICAL-c361t-9abba0b21ce4852504eaacba8e1ed71fe2d10f0d32ef555be4f1b4f7af2fa833
container_end_page 3042
container_issue 6
container_start_page 3037
container_title IEEE transactions on nuclear science
container_volume 61
creator Haeffner, T. D.
Loveless, T. D.
Zhang, E. X.
Sternberg, A. L.
Jagannathan, S.
Schrimpf, R. D.
Kauppila, J. S.
Alles, M. L.
Fleetwood, D. M.
Massengill, L. W.
Haddad, N. F.
description The impacts of total ionizing dose (TID), temperature and RF stress on the DC and RF performance of a commercial 32 nm RF silicon-on-insulator CMOS technology are presented. Temperature dependence is the overwhelmingly dominant single factor affecting the DC and RF performance, with the combined effects of elevated temperature and TID showing the most pronounced degradation. The most significant effect due to TID is an increase in off-state leakage current. Key DC and RF parameters of this 32 nm RF process degrade less than those of an otherwise similar 45 nm RF SOI CMOS process. The implications of the combined TID and temperature response are discussed for low-power RF design.
doi_str_mv 10.1109/TNS.2014.2360455
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2014_2360455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6935032</ieee_id><sourcerecordid>3534178951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9abba0b21ce4852504eaacba8e1ed71fe2d10f0d32ef555be4f1b4f7af2fa833</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7me4epVQtVCs2npdJMgspbbbuJgf_jb_FX2ZKizDwMvC8M_AQcsvZhHNmH4q39UQwriZC5kxpfUZGXGuTcT0152TEGDeZVdZekquUNsOqNNMj8rmIEeoGuia0FNqaFrjbY4Suj0jn3mPVJepDpECl-P1pd_Tjia6bbVOFNhtm0aZ-C90AzF5Xa_oeQ4UpXZMLD9uEN6cck-JpXsxesuXqeTF7XGaVzHmXWShLYKXgFSqjhWYKAaoSDHKsp9yjqDnzrJYCvda6ROV5qfwUvPBgpByT--PZfQxfPabObUIf2-Gj47m0IrfKmIFiR6qKIaWI3u1js4P47ThzB3ducOcO7tzJ3VC5O1YaRPzHcys1k0L-AZ2qaz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639269488</pqid></control><display><type>article</type><title>Irradiation and Temperature Effects for a 32 nm RF Silicon-on-Insulator CMOS Process</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Haeffner, T. D. ; Loveless, T. D. ; Zhang, E. X. ; Sternberg, A. L. ; Jagannathan, S. ; Schrimpf, R. D. ; Kauppila, J. S. ; Alles, M. L. ; Fleetwood, D. M. ; Massengill, L. W. ; Haddad, N. F.</creator><creatorcontrib>Haeffner, T. D. ; Loveless, T. D. ; Zhang, E. X. ; Sternberg, A. L. ; Jagannathan, S. ; Schrimpf, R. D. ; Kauppila, J. S. ; Alles, M. L. ; Fleetwood, D. M. ; Massengill, L. W. ; Haddad, N. F.</creatorcontrib><description>The impacts of total ionizing dose (TID), temperature and RF stress on the DC and RF performance of a commercial 32 nm RF silicon-on-insulator CMOS technology are presented. Temperature dependence is the overwhelmingly dominant single factor affecting the DC and RF performance, with the combined effects of elevated temperature and TID showing the most pronounced degradation. The most significant effect due to TID is an increase in off-state leakage current. Key DC and RF parameters of this 32 nm RF process degrade less than those of an otherwise similar 45 nm RF SOI CMOS process. The implications of the combined TID and temperature response are discussed for low-power RF design.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2014.2360455</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; CMOS process ; Degradation ; Radiation effects ; Radio frequency ; s-parameters ; Silicon-on-insulator ; silicon-on-insulator (SOI) ; Temperature measurement ; total ionizing dose (TID)</subject><ispartof>IEEE transactions on nuclear science, 2014-12, Vol.61 (6), p.3037-3042</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9abba0b21ce4852504eaacba8e1ed71fe2d10f0d32ef555be4f1b4f7af2fa833</citedby><cites>FETCH-LOGICAL-c361t-9abba0b21ce4852504eaacba8e1ed71fe2d10f0d32ef555be4f1b4f7af2fa833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6935032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Haeffner, T. D.</creatorcontrib><creatorcontrib>Loveless, T. D.</creatorcontrib><creatorcontrib>Zhang, E. X.</creatorcontrib><creatorcontrib>Sternberg, A. L.</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><creatorcontrib>Schrimpf, R. D.</creatorcontrib><creatorcontrib>Kauppila, J. S.</creatorcontrib><creatorcontrib>Alles, M. L.</creatorcontrib><creatorcontrib>Fleetwood, D. M.</creatorcontrib><creatorcontrib>Massengill, L. W.</creatorcontrib><creatorcontrib>Haddad, N. F.</creatorcontrib><title>Irradiation and Temperature Effects for a 32 nm RF Silicon-on-Insulator CMOS Process</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The impacts of total ionizing dose (TID), temperature and RF stress on the DC and RF performance of a commercial 32 nm RF silicon-on-insulator CMOS technology are presented. Temperature dependence is the overwhelmingly dominant single factor affecting the DC and RF performance, with the combined effects of elevated temperature and TID showing the most pronounced degradation. The most significant effect due to TID is an increase in off-state leakage current. Key DC and RF parameters of this 32 nm RF process degrade less than those of an otherwise similar 45 nm RF SOI CMOS process. The implications of the combined TID and temperature response are discussed for low-power RF design.</description><subject>CMOS</subject><subject>CMOS process</subject><subject>Degradation</subject><subject>Radiation effects</subject><subject>Radio frequency</subject><subject>s-parameters</subject><subject>Silicon-on-insulator</subject><subject>silicon-on-insulator (SOI)</subject><subject>Temperature measurement</subject><subject>total ionizing dose (TID)</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7me4epVQtVCs2npdJMgspbbbuJgf_jb_FX2ZKizDwMvC8M_AQcsvZhHNmH4q39UQwriZC5kxpfUZGXGuTcT0152TEGDeZVdZekquUNsOqNNMj8rmIEeoGuia0FNqaFrjbY4Suj0jn3mPVJepDpECl-P1pd_Tjia6bbVOFNhtm0aZ-C90AzF5Xa_oeQ4UpXZMLD9uEN6cck-JpXsxesuXqeTF7XGaVzHmXWShLYKXgFSqjhWYKAaoSDHKsp9yjqDnzrJYCvda6ROV5qfwUvPBgpByT--PZfQxfPabObUIf2-Gj47m0IrfKmIFiR6qKIaWI3u1js4P47ThzB3ducOcO7tzJ3VC5O1YaRPzHcys1k0L-AZ2qaz4</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Haeffner, T. D.</creator><creator>Loveless, T. D.</creator><creator>Zhang, E. X.</creator><creator>Sternberg, A. L.</creator><creator>Jagannathan, S.</creator><creator>Schrimpf, R. D.</creator><creator>Kauppila, J. S.</creator><creator>Alles, M. L.</creator><creator>Fleetwood, D. M.</creator><creator>Massengill, L. W.</creator><creator>Haddad, N. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20141201</creationdate><title>Irradiation and Temperature Effects for a 32 nm RF Silicon-on-Insulator CMOS Process</title><author>Haeffner, T. D. ; Loveless, T. D. ; Zhang, E. X. ; Sternberg, A. L. ; Jagannathan, S. ; Schrimpf, R. D. ; Kauppila, J. S. ; Alles, M. L. ; Fleetwood, D. M. ; Massengill, L. W. ; Haddad, N. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9abba0b21ce4852504eaacba8e1ed71fe2d10f0d32ef555be4f1b4f7af2fa833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CMOS</topic><topic>CMOS process</topic><topic>Degradation</topic><topic>Radiation effects</topic><topic>Radio frequency</topic><topic>s-parameters</topic><topic>Silicon-on-insulator</topic><topic>silicon-on-insulator (SOI)</topic><topic>Temperature measurement</topic><topic>total ionizing dose (TID)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haeffner, T. D.</creatorcontrib><creatorcontrib>Loveless, T. D.</creatorcontrib><creatorcontrib>Zhang, E. X.</creatorcontrib><creatorcontrib>Sternberg, A. L.</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><creatorcontrib>Schrimpf, R. D.</creatorcontrib><creatorcontrib>Kauppila, J. S.</creatorcontrib><creatorcontrib>Alles, M. L.</creatorcontrib><creatorcontrib>Fleetwood, D. M.</creatorcontrib><creatorcontrib>Massengill, L. W.</creatorcontrib><creatorcontrib>Haddad, N. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haeffner, T. D.</au><au>Loveless, T. D.</au><au>Zhang, E. X.</au><au>Sternberg, A. L.</au><au>Jagannathan, S.</au><au>Schrimpf, R. D.</au><au>Kauppila, J. S.</au><au>Alles, M. L.</au><au>Fleetwood, D. M.</au><au>Massengill, L. W.</au><au>Haddad, N. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irradiation and Temperature Effects for a 32 nm RF Silicon-on-Insulator CMOS Process</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>61</volume><issue>6</issue><spage>3037</spage><epage>3042</epage><pages>3037-3042</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The impacts of total ionizing dose (TID), temperature and RF stress on the DC and RF performance of a commercial 32 nm RF silicon-on-insulator CMOS technology are presented. Temperature dependence is the overwhelmingly dominant single factor affecting the DC and RF performance, with the combined effects of elevated temperature and TID showing the most pronounced degradation. The most significant effect due to TID is an increase in off-state leakage current. Key DC and RF parameters of this 32 nm RF process degrade less than those of an otherwise similar 45 nm RF SOI CMOS process. The implications of the combined TID and temperature response are discussed for low-power RF design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2014.2360455</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2014-12, Vol.61 (6), p.3037-3042
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2014_2360455
source IEEE Electronic Library (IEL) Journals
subjects CMOS
CMOS process
Degradation
Radiation effects
Radio frequency
s-parameters
Silicon-on-insulator
silicon-on-insulator (SOI)
Temperature measurement
total ionizing dose (TID)
title Irradiation and Temperature Effects for a 32 nm RF Silicon-on-Insulator CMOS Process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irradiation%20and%20Temperature%20Effects%20for%20a%2032%C2%A0nm%20RF%20Silicon-on-Insulator%20CMOS%20Process&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Haeffner,%20T.%20D.&rft.date=2014-12-01&rft.volume=61&rft.issue=6&rft.spage=3037&rft.epage=3042&rft.pages=3037-3042&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2014.2360455&rft_dat=%3Cproquest_cross%3E3534178951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-9abba0b21ce4852504eaacba8e1ed71fe2d10f0d32ef555be4f1b4f7af2fa833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1639269488&rft_id=info:pmid/&rft_ieee_id=6935032&rfr_iscdi=true