Loading…
Evidence of Interface Trap Build-Up in Irradiated 14-nm Bulk FinFET Technologies
Total ionizing dose response of 14-nm bulk-Si FinFETs has been studied with a specially designed test chip. The radiation testing shows evidence of interface trap build-up on 14-nm Bulk FinFET technologies. These defects created in the isolation layer give rise to a new radiation-induced leakage pat...
Saved in:
Published in: | IEEE transactions on nuclear science 2021-05, Vol.68 (5), p.671-676 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Total ionizing dose response of 14-nm bulk-Si FinFETs has been studied with a specially designed test chip. The radiation testing shows evidence of interface trap build-up on 14-nm Bulk FinFET technologies. These defects created in the isolation layer give rise to a new radiation-induced leakage path which might lead to a reliability issue in CMOS technologies at or below the 14-nm node. TCAD simulations are performed and an analytical model for TID-induced leakage current is presented to support analysis of the identified TID mechanism. TCAD simulation and analytical model results are consistent with the experimental data. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2021.3065267 |