Loading…
Spectral filter optimization for the recovery of parameters which describe human skin
The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the i...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2004-07, Vol.26 (7), p.913-922 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343 |
container_end_page | 922 |
container_issue | 7 |
container_start_page | 913 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 26 |
creator | Preece, S.J. Claridge, E. |
description | The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the image data and histological parameter values is defined as a mapping function from the image space to the parameter space. The accuracy of this function is determined by the choice of optical filters. An optimization criterion for finding the optimal filters is defined by combing methodology from differential geometry with statistical error analysis. It is shown that the magnitude of errors associated with the optimal filters is typically half of that for typical RGB filters on a three-parameter model of human skin coloration. Finally, other medical image applications are identified to which this generic methodology could be applied. |
doi_str_mv | 10.1109/TPAMI.2004.36 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2004_36</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1300561</ieee_id><sourcerecordid>28605587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343</originalsourceid><addsrcrecordid>eNqF0c9rFTEQB_AgFvusHj0JEnrwts_Jr93kWIrVQouC7TlksxNe6u5mTXYr9a932_eg4MXTDMyHLwxfQt4x2DIG5tPN97Pryy0HkFtRvyAbZoSphBLmJdkAq3mlNdfH5HUpdwBMKhCvyDHTqjFGmg25_TGhn7PraYj9jJmmaY5D_OPmmEYaUqbzDmlGn-4xP9AU6OSyG3Clhf7eRb-jHRafY4t0twxupOVnHN-Qo-D6gm8P84TcXny-Of9aXX37cnl-dlV52fC5Yl0QrXKC-8Y3WmhYtxB8cLrjWjSuMaxjreycaXltlGxlHTpAZzqJLRdSnJCP-9wpp18LltkOsXjsezdiWoqtGwFPuf-DXNeglG5WePoPvEtLHtcnrNYSJJOgVlTtkc-plIzBTjkOLj9YBvaxFfvUin1sxYp69R8OoUs7YPesDzWs4P0eRER8PgsAVTPxF2AxkSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884041405</pqid></control><display><type>article</type><title>Spectral filter optimization for the recovery of parameters which describe human skin</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Preece, S.J. ; Claridge, E.</creator><creatorcontrib>Preece, S.J. ; Claridge, E.</creatorcontrib><description>The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the image data and histological parameter values is defined as a mapping function from the image space to the parameter space. The accuracy of this function is determined by the choice of optical filters. An optimization criterion for finding the optimal filters is defined by combing methodology from differential geometry with statistical error analysis. It is shown that the magnitude of errors associated with the optimal filters is typically half of that for typical RGB filters on a three-parameter model of human skin coloration. Finally, other medical image applications are identified to which this generic methodology could be applied.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2004.36</identifier><identifier>PMID: 18579949</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Application software ; Artificial Intelligence ; Biomedical imaging ; Color ; Colorimetry - methods ; Computer graphics ; Dermoscopy - methods ; Humans ; image analysis ; Image color analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image reconstruction ; medical imaging ; Optical filters ; optimization ; Optimization methods ; Pattern Recognition, Automated - methods ; Pigmentation ; Skin ; skin color ; Skin Physiological Phenomena ; spectral filters</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2004-07, Vol.26 (7), p.913-922</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343</citedby><cites>FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1300561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18579949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Preece, S.J.</creatorcontrib><creatorcontrib>Claridge, E.</creatorcontrib><title>Spectral filter optimization for the recovery of parameters which describe human skin</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the image data and histological parameter values is defined as a mapping function from the image space to the parameter space. The accuracy of this function is determined by the choice of optical filters. An optimization criterion for finding the optimal filters is defined by combing methodology from differential geometry with statistical error analysis. It is shown that the magnitude of errors associated with the optimal filters is typically half of that for typical RGB filters on a three-parameter model of human skin coloration. Finally, other medical image applications are identified to which this generic methodology could be applied.</description><subject>Algorithms</subject><subject>Application software</subject><subject>Artificial Intelligence</subject><subject>Biomedical imaging</subject><subject>Color</subject><subject>Colorimetry - methods</subject><subject>Computer graphics</subject><subject>Dermoscopy - methods</subject><subject>Humans</subject><subject>image analysis</subject><subject>Image color analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>medical imaging</subject><subject>Optical filters</subject><subject>optimization</subject><subject>Optimization methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pigmentation</subject><subject>Skin</subject><subject>skin color</subject><subject>Skin Physiological Phenomena</subject><subject>spectral filters</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0c9rFTEQB_AgFvusHj0JEnrwts_Jr93kWIrVQouC7TlksxNe6u5mTXYr9a932_eg4MXTDMyHLwxfQt4x2DIG5tPN97Pryy0HkFtRvyAbZoSphBLmJdkAq3mlNdfH5HUpdwBMKhCvyDHTqjFGmg25_TGhn7PraYj9jJmmaY5D_OPmmEYaUqbzDmlGn-4xP9AU6OSyG3Clhf7eRb-jHRafY4t0twxupOVnHN-Qo-D6gm8P84TcXny-Of9aXX37cnl-dlV52fC5Yl0QrXKC-8Y3WmhYtxB8cLrjWjSuMaxjreycaXltlGxlHTpAZzqJLRdSnJCP-9wpp18LltkOsXjsezdiWoqtGwFPuf-DXNeglG5WePoPvEtLHtcnrNYSJJOgVlTtkc-plIzBTjkOLj9YBvaxFfvUin1sxYp69R8OoUs7YPesDzWs4P0eRER8PgsAVTPxF2AxkSI</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Preece, S.J.</creator><creator>Claridge, E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200407</creationdate><title>Spectral filter optimization for the recovery of parameters which describe human skin</title><author>Preece, S.J. ; Claridge, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Application software</topic><topic>Artificial Intelligence</topic><topic>Biomedical imaging</topic><topic>Color</topic><topic>Colorimetry - methods</topic><topic>Computer graphics</topic><topic>Dermoscopy - methods</topic><topic>Humans</topic><topic>image analysis</topic><topic>Image color analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>medical imaging</topic><topic>Optical filters</topic><topic>optimization</topic><topic>Optimization methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pigmentation</topic><topic>Skin</topic><topic>skin color</topic><topic>Skin Physiological Phenomena</topic><topic>spectral filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Preece, S.J.</creatorcontrib><creatorcontrib>Claridge, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Preece, S.J.</au><au>Claridge, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral filter optimization for the recovery of parameters which describe human skin</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2004-07</date><risdate>2004</risdate><volume>26</volume><issue>7</issue><spage>913</spage><epage>922</epage><pages>913-922</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the image data and histological parameter values is defined as a mapping function from the image space to the parameter space. The accuracy of this function is determined by the choice of optical filters. An optimization criterion for finding the optimal filters is defined by combing methodology from differential geometry with statistical error analysis. It is shown that the magnitude of errors associated with the optimal filters is typically half of that for typical RGB filters on a three-parameter model of human skin coloration. Finally, other medical image applications are identified to which this generic methodology could be applied.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18579949</pmid><doi>10.1109/TPAMI.2004.36</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2004-07, Vol.26 (7), p.913-922 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2004_36 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Application software Artificial Intelligence Biomedical imaging Color Colorimetry - methods Computer graphics Dermoscopy - methods Humans image analysis Image color analysis Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image reconstruction medical imaging Optical filters optimization Optimization methods Pattern Recognition, Automated - methods Pigmentation Skin skin color Skin Physiological Phenomena spectral filters |
title | Spectral filter optimization for the recovery of parameters which describe human skin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20filter%20optimization%20for%20the%20recovery%20of%20parameters%20which%20describe%20human%20skin&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Preece,%20S.J.&rft.date=2004-07&rft.volume=26&rft.issue=7&rft.spage=913&rft.epage=922&rft.pages=913-922&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2004.36&rft_dat=%3Cproquest_cross%3E28605587%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884041405&rft_id=info:pmid/18579949&rft_ieee_id=1300561&rfr_iscdi=true |