Loading…

Spectral filter optimization for the recovery of parameters which describe human skin

The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2004-07, Vol.26 (7), p.913-922
Main Authors: Preece, S.J., Claridge, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343
cites cdi_FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343
container_end_page 922
container_issue 7
container_start_page 913
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 26
creator Preece, S.J.
Claridge, E.
description The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the image data and histological parameter values is defined as a mapping function from the image space to the parameter space. The accuracy of this function is determined by the choice of optical filters. An optimization criterion for finding the optimal filters is defined by combing methodology from differential geometry with statistical error analysis. It is shown that the magnitude of errors associated with the optimal filters is typically half of that for typical RGB filters on a three-parameter model of human skin coloration. Finally, other medical image applications are identified to which this generic methodology could be applied.
doi_str_mv 10.1109/TPAMI.2004.36
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2004_36</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1300561</ieee_id><sourcerecordid>28605587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343</originalsourceid><addsrcrecordid>eNqF0c9rFTEQB_AgFvusHj0JEnrwts_Jr93kWIrVQouC7TlksxNe6u5mTXYr9a932_eg4MXTDMyHLwxfQt4x2DIG5tPN97Pryy0HkFtRvyAbZoSphBLmJdkAq3mlNdfH5HUpdwBMKhCvyDHTqjFGmg25_TGhn7PraYj9jJmmaY5D_OPmmEYaUqbzDmlGn-4xP9AU6OSyG3Clhf7eRb-jHRafY4t0twxupOVnHN-Qo-D6gm8P84TcXny-Of9aXX37cnl-dlV52fC5Yl0QrXKC-8Y3WmhYtxB8cLrjWjSuMaxjreycaXltlGxlHTpAZzqJLRdSnJCP-9wpp18LltkOsXjsezdiWoqtGwFPuf-DXNeglG5WePoPvEtLHtcnrNYSJJOgVlTtkc-plIzBTjkOLj9YBvaxFfvUin1sxYp69R8OoUs7YPesDzWs4P0eRER8PgsAVTPxF2AxkSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884041405</pqid></control><display><type>article</type><title>Spectral filter optimization for the recovery of parameters which describe human skin</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Preece, S.J. ; Claridge, E.</creator><creatorcontrib>Preece, S.J. ; Claridge, E.</creatorcontrib><description>The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the image data and histological parameter values is defined as a mapping function from the image space to the parameter space. The accuracy of this function is determined by the choice of optical filters. An optimization criterion for finding the optimal filters is defined by combing methodology from differential geometry with statistical error analysis. It is shown that the magnitude of errors associated with the optimal filters is typically half of that for typical RGB filters on a three-parameter model of human skin coloration. Finally, other medical image applications are identified to which this generic methodology could be applied.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2004.36</identifier><identifier>PMID: 18579949</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Application software ; Artificial Intelligence ; Biomedical imaging ; Color ; Colorimetry - methods ; Computer graphics ; Dermoscopy - methods ; Humans ; image analysis ; Image color analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image reconstruction ; medical imaging ; Optical filters ; optimization ; Optimization methods ; Pattern Recognition, Automated - methods ; Pigmentation ; Skin ; skin color ; Skin Physiological Phenomena ; spectral filters</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2004-07, Vol.26 (7), p.913-922</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343</citedby><cites>FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1300561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18579949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Preece, S.J.</creatorcontrib><creatorcontrib>Claridge, E.</creatorcontrib><title>Spectral filter optimization for the recovery of parameters which describe human skin</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the image data and histological parameter values is defined as a mapping function from the image space to the parameter space. The accuracy of this function is determined by the choice of optical filters. An optimization criterion for finding the optimal filters is defined by combing methodology from differential geometry with statistical error analysis. It is shown that the magnitude of errors associated with the optimal filters is typically half of that for typical RGB filters on a three-parameter model of human skin coloration. Finally, other medical image applications are identified to which this generic methodology could be applied.</description><subject>Algorithms</subject><subject>Application software</subject><subject>Artificial Intelligence</subject><subject>Biomedical imaging</subject><subject>Color</subject><subject>Colorimetry - methods</subject><subject>Computer graphics</subject><subject>Dermoscopy - methods</subject><subject>Humans</subject><subject>image analysis</subject><subject>Image color analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>medical imaging</subject><subject>Optical filters</subject><subject>optimization</subject><subject>Optimization methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pigmentation</subject><subject>Skin</subject><subject>skin color</subject><subject>Skin Physiological Phenomena</subject><subject>spectral filters</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0c9rFTEQB_AgFvusHj0JEnrwts_Jr93kWIrVQouC7TlksxNe6u5mTXYr9a932_eg4MXTDMyHLwxfQt4x2DIG5tPN97Pryy0HkFtRvyAbZoSphBLmJdkAq3mlNdfH5HUpdwBMKhCvyDHTqjFGmg25_TGhn7PraYj9jJmmaY5D_OPmmEYaUqbzDmlGn-4xP9AU6OSyG3Clhf7eRb-jHRafY4t0twxupOVnHN-Qo-D6gm8P84TcXny-Of9aXX37cnl-dlV52fC5Yl0QrXKC-8Y3WmhYtxB8cLrjWjSuMaxjreycaXltlGxlHTpAZzqJLRdSnJCP-9wpp18LltkOsXjsezdiWoqtGwFPuf-DXNeglG5WePoPvEtLHtcnrNYSJJOgVlTtkc-plIzBTjkOLj9YBvaxFfvUin1sxYp69R8OoUs7YPesDzWs4P0eRER8PgsAVTPxF2AxkSI</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Preece, S.J.</creator><creator>Claridge, E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200407</creationdate><title>Spectral filter optimization for the recovery of parameters which describe human skin</title><author>Preece, S.J. ; Claridge, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Application software</topic><topic>Artificial Intelligence</topic><topic>Biomedical imaging</topic><topic>Color</topic><topic>Colorimetry - methods</topic><topic>Computer graphics</topic><topic>Dermoscopy - methods</topic><topic>Humans</topic><topic>image analysis</topic><topic>Image color analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>medical imaging</topic><topic>Optical filters</topic><topic>optimization</topic><topic>Optimization methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pigmentation</topic><topic>Skin</topic><topic>skin color</topic><topic>Skin Physiological Phenomena</topic><topic>spectral filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Preece, S.J.</creatorcontrib><creatorcontrib>Claridge, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Preece, S.J.</au><au>Claridge, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral filter optimization for the recovery of parameters which describe human skin</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2004-07</date><risdate>2004</risdate><volume>26</volume><issue>7</issue><spage>913</spage><epage>922</epage><pages>913-922</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>The paper presents a method for finding spectral filters that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the image data and histological parameter values is defined as a mapping function from the image space to the parameter space. The accuracy of this function is determined by the choice of optical filters. An optimization criterion for finding the optimal filters is defined by combing methodology from differential geometry with statistical error analysis. It is shown that the magnitude of errors associated with the optimal filters is typically half of that for typical RGB filters on a three-parameter model of human skin coloration. Finally, other medical image applications are identified to which this generic methodology could be applied.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18579949</pmid><doi>10.1109/TPAMI.2004.36</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2004-07, Vol.26 (7), p.913-922
issn 0162-8828
1939-3539
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2004_36
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Application software
Artificial Intelligence
Biomedical imaging
Color
Colorimetry - methods
Computer graphics
Dermoscopy - methods
Humans
image analysis
Image color analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image reconstruction
medical imaging
Optical filters
optimization
Optimization methods
Pattern Recognition, Automated - methods
Pigmentation
Skin
skin color
Skin Physiological Phenomena
spectral filters
title Spectral filter optimization for the recovery of parameters which describe human skin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20filter%20optimization%20for%20the%20recovery%20of%20parameters%20which%20describe%20human%20skin&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Preece,%20S.J.&rft.date=2004-07&rft.volume=26&rft.issue=7&rft.spage=913&rft.epage=922&rft.pages=913-922&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2004.36&rft_dat=%3Cproquest_cross%3E28605587%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-1df3b5a32c7c7838032cffcfa8d2837a791d1b4da9b26954b46fd0ea9d4eb2343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884041405&rft_id=info:pmid/18579949&rft_ieee_id=1300561&rfr_iscdi=true