Loading…

Scalable Robust Principal Component Analysis Using Grassmann Averages

In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2016-11, Vol.38 (11), p.2298-2311
Main Authors: Hauberg, Sren, Feragen, Aasa, Enficiaud, Raffi, Black, Michael J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-fbd1ebf62dd0c3746d2101da273cf1eac94ab9327a1f10a41011ea9d7b81f22a3
cites cdi_FETCH-LOGICAL-c417t-fbd1ebf62dd0c3746d2101da273cf1eac94ab9327a1f10a41011ea9d7b81f22a3
container_end_page 2311
container_issue 11
container_start_page 2298
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 38
creator Hauberg, Sren
Feragen, Aasa
Enficiaud, Raffi
Black, Michael J.
description In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.
doi_str_mv 10.1109/TPAMI.2015.2511743
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2015_2511743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7364267</ieee_id><sourcerecordid>4223939651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-fbd1ebf62dd0c3746d2101da273cf1eac94ab9327a1f10a41011ea9d7b81f22a3</originalsourceid><addsrcrecordid>eNpdkNFKwzAUhoMobk5fQEEK3njTmZOkaXNZxpwDxaHbdUjbdHS0aU1aYW9v6-YuvDpwzvf_cD6EbgFPAbB4Wq_it-WUYAimJAAIGT1DYxBU-DSg4hyNMXDiRxGJRujKuR3GwAJML9GI8JACp2yM5p-pKlVSau-jTjrXeitbmLRoVOnN6qqpjTatFxtV7l3hvI0rzNZbWOVcpYzx4m9t1Va7a3SRq9Lpm-OcoM3zfD178V_fF8tZ_OqnDMLWz5MMdJJzkmU4pSHjGQEMmSIhTXPQKhVMJYKSUEEOWLH-2G9FFiYR5IQoOkGPh97G1l-ddq2sCpfqslRG152TEBHOAywC1qMP_9Bd3dn-kYGigHEAAnqKHKjU1s5ZncvGFpWyewlYDpLlr2Q5SJZHyX3o_ljdJZXOTpE_qz1wdwAKrfXpHFLOBuQHqhh_xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831005191</pqid></control><display><type>article</type><title>Scalable Robust Principal Component Analysis Using Grassmann Averages</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hauberg, Sren ; Feragen, Aasa ; Enficiaud, Raffi ; Black, Michael J.</creator><creatorcontrib>Hauberg, Sren ; Feragen, Aasa ; Enficiaud, Raffi ; Black, Michael J.</creatorcontrib><description>In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2015.2511743</identifier><identifier>PMID: 26731634</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Approximation methods ; Complexity theory ; Computer vision ; Dimensionality reduction ; Estimation ; Manifolds ; Principal component analysis ; Principal components analysis ; robust principal component analysis ; Robustness ; subspace estimation</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2016-11, Vol.38 (11), p.2298-2311</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-fbd1ebf62dd0c3746d2101da273cf1eac94ab9327a1f10a41011ea9d7b81f22a3</citedby><cites>FETCH-LOGICAL-c417t-fbd1ebf62dd0c3746d2101da273cf1eac94ab9327a1f10a41011ea9d7b81f22a3</cites><orcidid>0000-0001-7223-877X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7364267$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26731634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hauberg, Sren</creatorcontrib><creatorcontrib>Feragen, Aasa</creatorcontrib><creatorcontrib>Enficiaud, Raffi</creatorcontrib><creatorcontrib>Black, Michael J.</creatorcontrib><title>Scalable Robust Principal Component Analysis Using Grassmann Averages</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.</description><subject>Approximation methods</subject><subject>Complexity theory</subject><subject>Computer vision</subject><subject>Dimensionality reduction</subject><subject>Estimation</subject><subject>Manifolds</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>robust principal component analysis</subject><subject>Robustness</subject><subject>subspace estimation</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkNFKwzAUhoMobk5fQEEK3njTmZOkaXNZxpwDxaHbdUjbdHS0aU1aYW9v6-YuvDpwzvf_cD6EbgFPAbB4Wq_it-WUYAimJAAIGT1DYxBU-DSg4hyNMXDiRxGJRujKuR3GwAJML9GI8JACp2yM5p-pKlVSau-jTjrXeitbmLRoVOnN6qqpjTatFxtV7l3hvI0rzNZbWOVcpYzx4m9t1Va7a3SRq9Lpm-OcoM3zfD178V_fF8tZ_OqnDMLWz5MMdJJzkmU4pSHjGQEMmSIhTXPQKhVMJYKSUEEOWLH-2G9FFiYR5IQoOkGPh97G1l-ddq2sCpfqslRG152TEBHOAywC1qMP_9Bd3dn-kYGigHEAAnqKHKjU1s5ZncvGFpWyewlYDpLlr2Q5SJZHyX3o_ljdJZXOTpE_qz1wdwAKrfXpHFLOBuQHqhh_xQ</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Hauberg, Sren</creator><creator>Feragen, Aasa</creator><creator>Enficiaud, Raffi</creator><creator>Black, Michael J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7223-877X</orcidid></search><sort><creationdate>20161101</creationdate><title>Scalable Robust Principal Component Analysis Using Grassmann Averages</title><author>Hauberg, Sren ; Feragen, Aasa ; Enficiaud, Raffi ; Black, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-fbd1ebf62dd0c3746d2101da273cf1eac94ab9327a1f10a41011ea9d7b81f22a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation methods</topic><topic>Complexity theory</topic><topic>Computer vision</topic><topic>Dimensionality reduction</topic><topic>Estimation</topic><topic>Manifolds</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>robust principal component analysis</topic><topic>Robustness</topic><topic>subspace estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauberg, Sren</creatorcontrib><creatorcontrib>Feragen, Aasa</creatorcontrib><creatorcontrib>Enficiaud, Raffi</creatorcontrib><creatorcontrib>Black, Michael J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauberg, Sren</au><au>Feragen, Aasa</au><au>Enficiaud, Raffi</au><au>Black, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Robust Principal Component Analysis Using Grassmann Averages</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>38</volume><issue>11</issue><spage>2298</spage><epage>2311</epage><pages>2298-2311</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26731634</pmid><doi>10.1109/TPAMI.2015.2511743</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7223-877X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2016-11, Vol.38 (11), p.2298-2311
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2015_2511743
source IEEE Electronic Library (IEL) Journals
subjects Approximation methods
Complexity theory
Computer vision
Dimensionality reduction
Estimation
Manifolds
Principal component analysis
Principal components analysis
robust principal component analysis
Robustness
subspace estimation
title Scalable Robust Principal Component Analysis Using Grassmann Averages
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Robust%20Principal%20Component%20Analysis%20Using%20Grassmann%20Averages&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Hauberg,%20Sren&rft.date=2016-11-01&rft.volume=38&rft.issue=11&rft.spage=2298&rft.epage=2311&rft.pages=2298-2311&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2015.2511743&rft_dat=%3Cproquest_cross%3E4223939651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-fbd1ebf62dd0c3746d2101da273cf1eac94ab9327a1f10a41011ea9d7b81f22a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1831005191&rft_id=info:pmid/26731634&rft_ieee_id=7364267&rfr_iscdi=true