Loading…
HUMBI: A Large Multiview Dataset of Human Body Expressions and Benchmark Challenge
This paper presents a new large multiview dataset called HUMBI for human body expressions with natural clothing. The goal of HUMBI is to facilitate modeling view-specific appearance and geometry of five primary body signals including gaze, face, hand, body, and garment from assorted people. 107 sync...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2023-01, Vol.45 (1), p.623-640 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-ec81e6f67a4dddb100f1a05917bcb070f320d14b4b24db9f36d9d71caddd9b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-ec81e6f67a4dddb100f1a05917bcb070f320d14b4b24db9f36d9d71caddd9b83 |
container_end_page | 640 |
container_issue | 1 |
container_start_page | 623 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Yoon, Jae Shin Yu, Zhixuan Park, Jaesik Park, Hyun Soo |
description | This paper presents a new large multiview dataset called HUMBI for human body expressions with natural clothing. The goal of HUMBI is to facilitate modeling view-specific appearance and geometry of five primary body signals including gaze, face, hand, body, and garment from assorted people. 107 synchronized HD cameras are used to capture 772 distinctive subjects across gender, ethnicity, age, and style. With the multiview image streams, we reconstruct the geometry of body expressions using 3D mesh models, which allows representing view-specific appearance. We demonstrate that HUMBI is highly effective in learning and reconstructing a complete human model and is complementary to the existing datasets of human body expressions with limited views and subjects such as MPII-Gaze, Multi-PIE, Human3.6M, and Panoptic Studio datasets. Based on HUMBI, we formulate a new benchmark challenge of a pose-guided appearance rendering task that aims to substantially extend photorealism in modeling diverse human expressions in 3D, which is the key enabling factor of authentic social tele-presence. HUMBI is publicly available at http://humbi-data.net . |
doi_str_mv | 10.1109/TPAMI.2021.3138762 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2021_3138762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9664343</ieee_id><sourcerecordid>2747609929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ec81e6f67a4dddb100f1a05917bcb070f320d14b4b24db9f36d9d71caddd9b83</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EgvL4AZCQJTZsUjy248Ts2lJopVYgVNaWE08gkCYlTnj8PYEWFqxmMedezRxCjoH1AZi-WNwN5tM-Zxz6AkQcKb5FeqCFDkQo9DbpMVA8iGMe75F9758ZAxkysUv2hNSKx4r3yP3kYT6cXtIBndn6Eem8LZr8Lcd3emUb67GhVUYn7dKWdFi5Tzr-WNXofV6VntrS0SGW6dPS1i909GSLAstHPCQ7mS08Hm3mAVlcjxejSTC7vZmOBrMgFSE0AaYxoMpUZKVzLgHGMrAs1BAlacIilgnOHMhEJly6RGdCOe0iSG1H6yQWB-R8Xbuqq9cWfWOWuU-xKGyJVesNVxByrWMRdejZP_S5auuyO87wSEaKac11R_E1ldaV9zVmZlXn3WufBpj5Fm5-hJtv4WYjvAudbqrbZInuL_JruANO1kCOiH9rrZQUUogv_9mDOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609929</pqid></control><display><type>article</type><title>HUMBI: A Large Multiview Dataset of Human Body Expressions and Benchmark Challenge</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yoon, Jae Shin ; Yu, Zhixuan ; Park, Jaesik ; Park, Hyun Soo</creator><creatorcontrib>Yoon, Jae Shin ; Yu, Zhixuan ; Park, Jaesik ; Park, Hyun Soo</creatorcontrib><description>This paper presents a new large multiview dataset called HUMBI for human body expressions with natural clothing. The goal of HUMBI is to facilitate modeling view-specific appearance and geometry of five primary body signals including gaze, face, hand, body, and garment from assorted people. 107 synchronized HD cameras are used to capture 772 distinctive subjects across gender, ethnicity, age, and style. With the multiview image streams, we reconstruct the geometry of body expressions using 3D mesh models, which allows representing view-specific appearance. We demonstrate that HUMBI is highly effective in learning and reconstructing a complete human model and is complementary to the existing datasets of human body expressions with limited views and subjects such as MPII-Gaze, Multi-PIE, Human3.6M, and Panoptic Studio datasets. Based on HUMBI, we formulate a new benchmark challenge of a pose-guided appearance rendering task that aims to substantially extend photorealism in modeling diverse human expressions in 3D, which is the key enabling factor of authentic social tele-presence. HUMBI is publicly available at http://humbi-data.net .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3138762</identifier><identifier>PMID: 34962862</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D geometry and appearance ; Algorithms ; Benchmarking ; Benchmarks ; Biological system modeling ; Cameras ; Datasets ; Faces ; Finite element method ; Geometry ; Human behavioral imaging ; Human Body ; Humans ; Image reconstruction ; Learning ; Modelling ; multiview dataset ; Solid modeling ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.623-640</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ec81e6f67a4dddb100f1a05917bcb070f320d14b4b24db9f36d9d71caddd9b83</citedby><cites>FETCH-LOGICAL-c351t-ec81e6f67a4dddb100f1a05917bcb070f320d14b4b24db9f36d9d71caddd9b83</cites><orcidid>0000-0001-5541-409X ; 0000-0003-0181-4869 ; 0000-0001-6613-0738 ; 0000-0002-3065-6962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9664343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34962862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Jae Shin</creatorcontrib><creatorcontrib>Yu, Zhixuan</creatorcontrib><creatorcontrib>Park, Jaesik</creatorcontrib><creatorcontrib>Park, Hyun Soo</creatorcontrib><title>HUMBI: A Large Multiview Dataset of Human Body Expressions and Benchmark Challenge</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper presents a new large multiview dataset called HUMBI for human body expressions with natural clothing. The goal of HUMBI is to facilitate modeling view-specific appearance and geometry of five primary body signals including gaze, face, hand, body, and garment from assorted people. 107 synchronized HD cameras are used to capture 772 distinctive subjects across gender, ethnicity, age, and style. With the multiview image streams, we reconstruct the geometry of body expressions using 3D mesh models, which allows representing view-specific appearance. We demonstrate that HUMBI is highly effective in learning and reconstructing a complete human model and is complementary to the existing datasets of human body expressions with limited views and subjects such as MPII-Gaze, Multi-PIE, Human3.6M, and Panoptic Studio datasets. Based on HUMBI, we formulate a new benchmark challenge of a pose-guided appearance rendering task that aims to substantially extend photorealism in modeling diverse human expressions in 3D, which is the key enabling factor of authentic social tele-presence. HUMBI is publicly available at http://humbi-data.net .</description><subject>3D geometry and appearance</subject><subject>Algorithms</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Biological system modeling</subject><subject>Cameras</subject><subject>Datasets</subject><subject>Faces</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Human behavioral imaging</subject><subject>Human Body</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Learning</subject><subject>Modelling</subject><subject>multiview dataset</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EgvL4AZCQJTZsUjy248Ts2lJopVYgVNaWE08gkCYlTnj8PYEWFqxmMedezRxCjoH1AZi-WNwN5tM-Zxz6AkQcKb5FeqCFDkQo9DbpMVA8iGMe75F9758ZAxkysUv2hNSKx4r3yP3kYT6cXtIBndn6Eem8LZr8Lcd3emUb67GhVUYn7dKWdFi5Tzr-WNXofV6VntrS0SGW6dPS1i909GSLAstHPCQ7mS08Hm3mAVlcjxejSTC7vZmOBrMgFSE0AaYxoMpUZKVzLgHGMrAs1BAlacIilgnOHMhEJly6RGdCOe0iSG1H6yQWB-R8Xbuqq9cWfWOWuU-xKGyJVesNVxByrWMRdejZP_S5auuyO87wSEaKac11R_E1ldaV9zVmZlXn3WufBpj5Fm5-hJtv4WYjvAudbqrbZInuL_JruANO1kCOiH9rrZQUUogv_9mDOA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yoon, Jae Shin</creator><creator>Yu, Zhixuan</creator><creator>Park, Jaesik</creator><creator>Park, Hyun Soo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5541-409X</orcidid><orcidid>https://orcid.org/0000-0003-0181-4869</orcidid><orcidid>https://orcid.org/0000-0001-6613-0738</orcidid><orcidid>https://orcid.org/0000-0002-3065-6962</orcidid></search><sort><creationdate>20230101</creationdate><title>HUMBI: A Large Multiview Dataset of Human Body Expressions and Benchmark Challenge</title><author>Yoon, Jae Shin ; Yu, Zhixuan ; Park, Jaesik ; Park, Hyun Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ec81e6f67a4dddb100f1a05917bcb070f320d14b4b24db9f36d9d71caddd9b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D geometry and appearance</topic><topic>Algorithms</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Biological system modeling</topic><topic>Cameras</topic><topic>Datasets</topic><topic>Faces</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Human behavioral imaging</topic><topic>Human Body</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Learning</topic><topic>Modelling</topic><topic>multiview dataset</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Jae Shin</creatorcontrib><creatorcontrib>Yu, Zhixuan</creatorcontrib><creatorcontrib>Park, Jaesik</creatorcontrib><creatorcontrib>Park, Hyun Soo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Jae Shin</au><au>Yu, Zhixuan</au><au>Park, Jaesik</au><au>Park, Hyun Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HUMBI: A Large Multiview Dataset of Human Body Expressions and Benchmark Challenge</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>45</volume><issue>1</issue><spage>623</spage><epage>640</epage><pages>623-640</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper presents a new large multiview dataset called HUMBI for human body expressions with natural clothing. The goal of HUMBI is to facilitate modeling view-specific appearance and geometry of five primary body signals including gaze, face, hand, body, and garment from assorted people. 107 synchronized HD cameras are used to capture 772 distinctive subjects across gender, ethnicity, age, and style. With the multiview image streams, we reconstruct the geometry of body expressions using 3D mesh models, which allows representing view-specific appearance. We demonstrate that HUMBI is highly effective in learning and reconstructing a complete human model and is complementary to the existing datasets of human body expressions with limited views and subjects such as MPII-Gaze, Multi-PIE, Human3.6M, and Panoptic Studio datasets. Based on HUMBI, we formulate a new benchmark challenge of a pose-guided appearance rendering task that aims to substantially extend photorealism in modeling diverse human expressions in 3D, which is the key enabling factor of authentic social tele-presence. HUMBI is publicly available at http://humbi-data.net .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34962862</pmid><doi>10.1109/TPAMI.2021.3138762</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5541-409X</orcidid><orcidid>https://orcid.org/0000-0003-0181-4869</orcidid><orcidid>https://orcid.org/0000-0001-6613-0738</orcidid><orcidid>https://orcid.org/0000-0002-3065-6962</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.623-640 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2021_3138762 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 3D geometry and appearance Algorithms Benchmarking Benchmarks Biological system modeling Cameras Datasets Faces Finite element method Geometry Human behavioral imaging Human Body Humans Image reconstruction Learning Modelling multiview dataset Solid modeling Three dimensional models Three-dimensional displays |
title | HUMBI: A Large Multiview Dataset of Human Body Expressions and Benchmark Challenge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HUMBI:%20A%20Large%20Multiview%20Dataset%20of%20Human%20Body%20Expressions%20and%20Benchmark%20Challenge&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Yoon,%20Jae%20Shin&rft.date=2023-01-01&rft.volume=45&rft.issue=1&rft.spage=623&rft.epage=640&rft.pages=623-640&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3138762&rft_dat=%3Cproquest_cross%3E2747609929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-ec81e6f67a4dddb100f1a05917bcb070f320d14b4b24db9f36d9d71caddd9b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747609929&rft_id=info:pmid/34962862&rft_ieee_id=9664343&rfr_iscdi=true |