Loading…

Local and Global GANs With Semantic-Aware Upsampling for Image Generation

In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2023-01, Vol.45 (1), p.768-784
Main Authors: Tang, Hao, Shao, Ling, Torr, Philip H.S., Sebe, Nicu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543
cites cdi_FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543
container_end_page 784
container_issue 1
container_start_page 768
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Tang, Hao
Shao, Ling
Torr, Philip H.S.
Sebe, Nicu
description In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As such, we design a local class-specific generative network using semantic maps as guidance, which separately constructs and learns subgenerators for different classes, enabling it to capture finer details. To learn more discriminative class-specific feature representations for the local generation, we also propose a novel classification module. To combine the advantages of both global image-level and local class-specific generation, a joint generation network is designed with an attention fusion module and a dual-discriminator structure embedded. Lastly, we propose a novel semantic-aware upsampling method, which has a larger receptive field and can take far-away pixels that are semantically related for feature upsampling, enabling it to better preserve semantic consistency for instances with the same semantic labels. Extensive experiments on two image generation tasks show the superior performance of the proposed method. State-of-the-art results are established by large margins on both tasks and on nine challenging public benchmarks. The source code and trained models are available at https://github.com/Ha0Tang/LGGAN .
doi_str_mv 10.1109/TPAMI.2022.3155989
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2022_3155989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9732069</ieee_id><sourcerecordid>2638013283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZl8bHIsRWuhfoCKx5BNsrplP2qyRfz3bm314GkG5nmHmQehU4LHhGB19fw4uZuPAQOMKeFcSbWHhkRRlVJO1T4aYiIglRLkAB3FuMSYMI7pIRpQDoICU0M0X7TWVIlpXDKr2rxvZ5P7mLyW3Xvy5GvTdKVNJ58m-ORlFU29qsrmLSnakMxr8-aTmW98MF3ZNsfooDBV9Ce7OkIvN9fP09t08TCbTyeL1FLFu1Q46A8yVlLGslyBY6KwioqcM5c5BwV4BZAbI5kCywtDrZNSKSeItI4zOkKX272r0H6sfex0XUbrq8o0vl1H3X8mMaEgaY9e_EOX7To0_XUaMpYJgkXvY4RgS9nQxhh8oVehrE340gTrjWj9I1pvROud6D50vlu9zmvv_iK_ZnvgbAuU3vu_scooYKHoN-8Wf7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747610650</pqid></control><display><type>article</type><title>Local and Global GANs With Semantic-Aware Upsampling for Image Generation</title><source>IEEE Xplore (Online service)</source><creator>Tang, Hao ; Shao, Ling ; Torr, Philip H.S. ; Sebe, Nicu</creator><creatorcontrib>Tang, Hao ; Shao, Ling ; Torr, Philip H.S. ; Sebe, Nicu</creatorcontrib><description>In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As such, we design a local class-specific generative network using semantic maps as guidance, which separately constructs and learns subgenerators for different classes, enabling it to capture finer details. To learn more discriminative class-specific feature representations for the local generation, we also propose a novel classification module. To combine the advantages of both global image-level and local class-specific generation, a joint generation network is designed with an attention fusion module and a dual-discriminator structure embedded. Lastly, we propose a novel semantic-aware upsampling method, which has a larger receptive field and can take far-away pixels that are semantically related for feature upsampling, enabling it to better preserve semantic consistency for instances with the same semantic labels. Extensive experiments on two image generation tasks show the superior performance of the proposed method. State-of-the-art results are established by large margins on both tasks and on nine challenging public benchmarks. The source code and trained models are available at https://github.com/Ha0Tang/LGGAN .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3155989</identifier><identifier>PMID: 35263249</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>feature upsampling ; GANs ; Generative adversarial networks ; Generators ; Image classification ; image generation ; Image processing ; Image synthesis ; Interpolation ; Kernel ; local and global ; Modules ; semantic-guided ; Semantics ; Source code ; Task analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.768-784</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543</citedby><cites>FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543</cites><orcidid>0000-0002-8264-6117 ; 0000-0002-6597-7248 ; 0000-0002-2077-1246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9732069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35263249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><creatorcontrib>Torr, Philip H.S.</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><title>Local and Global GANs With Semantic-Aware Upsampling for Image Generation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As such, we design a local class-specific generative network using semantic maps as guidance, which separately constructs and learns subgenerators for different classes, enabling it to capture finer details. To learn more discriminative class-specific feature representations for the local generation, we also propose a novel classification module. To combine the advantages of both global image-level and local class-specific generation, a joint generation network is designed with an attention fusion module and a dual-discriminator structure embedded. Lastly, we propose a novel semantic-aware upsampling method, which has a larger receptive field and can take far-away pixels that are semantically related for feature upsampling, enabling it to better preserve semantic consistency for instances with the same semantic labels. Extensive experiments on two image generation tasks show the superior performance of the proposed method. State-of-the-art results are established by large margins on both tasks and on nine challenging public benchmarks. The source code and trained models are available at https://github.com/Ha0Tang/LGGAN .</description><subject>feature upsampling</subject><subject>GANs</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image classification</subject><subject>image generation</subject><subject>Image processing</subject><subject>Image synthesis</subject><subject>Interpolation</subject><subject>Kernel</subject><subject>local and global</subject><subject>Modules</subject><subject>semantic-guided</subject><subject>Semantics</subject><subject>Source code</subject><subject>Task analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZl8bHIsRWuhfoCKx5BNsrplP2qyRfz3bm314GkG5nmHmQehU4LHhGB19fw4uZuPAQOMKeFcSbWHhkRRlVJO1T4aYiIglRLkAB3FuMSYMI7pIRpQDoICU0M0X7TWVIlpXDKr2rxvZ5P7mLyW3Xvy5GvTdKVNJ58m-ORlFU29qsrmLSnakMxr8-aTmW98MF3ZNsfooDBV9Ce7OkIvN9fP09t08TCbTyeL1FLFu1Q46A8yVlLGslyBY6KwioqcM5c5BwV4BZAbI5kCywtDrZNSKSeItI4zOkKX272r0H6sfex0XUbrq8o0vl1H3X8mMaEgaY9e_EOX7To0_XUaMpYJgkXvY4RgS9nQxhh8oVehrE340gTrjWj9I1pvROud6D50vlu9zmvv_iK_ZnvgbAuU3vu_scooYKHoN-8Wf7A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Tang, Hao</creator><creator>Shao, Ling</creator><creator>Torr, Philip H.S.</creator><creator>Sebe, Nicu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid><orcidid>https://orcid.org/0000-0002-2077-1246</orcidid></search><sort><creationdate>20230101</creationdate><title>Local and Global GANs With Semantic-Aware Upsampling for Image Generation</title><author>Tang, Hao ; Shao, Ling ; Torr, Philip H.S. ; Sebe, Nicu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>feature upsampling</topic><topic>GANs</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image classification</topic><topic>image generation</topic><topic>Image processing</topic><topic>Image synthesis</topic><topic>Interpolation</topic><topic>Kernel</topic><topic>local and global</topic><topic>Modules</topic><topic>semantic-guided</topic><topic>Semantics</topic><topic>Source code</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><creatorcontrib>Torr, Philip H.S.</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hao</au><au>Shao, Ling</au><au>Torr, Philip H.S.</au><au>Sebe, Nicu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local and Global GANs With Semantic-Aware Upsampling for Image Generation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>45</volume><issue>1</issue><spage>768</spage><epage>784</epage><pages>768-784</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As such, we design a local class-specific generative network using semantic maps as guidance, which separately constructs and learns subgenerators for different classes, enabling it to capture finer details. To learn more discriminative class-specific feature representations for the local generation, we also propose a novel classification module. To combine the advantages of both global image-level and local class-specific generation, a joint generation network is designed with an attention fusion module and a dual-discriminator structure embedded. Lastly, we propose a novel semantic-aware upsampling method, which has a larger receptive field and can take far-away pixels that are semantically related for feature upsampling, enabling it to better preserve semantic consistency for instances with the same semantic labels. Extensive experiments on two image generation tasks show the superior performance of the proposed method. State-of-the-art results are established by large margins on both tasks and on nine challenging public benchmarks. The source code and trained models are available at https://github.com/Ha0Tang/LGGAN .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35263249</pmid><doi>10.1109/TPAMI.2022.3155989</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid><orcidid>https://orcid.org/0000-0002-2077-1246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.768-784
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2022_3155989
source IEEE Xplore (Online service)
subjects feature upsampling
GANs
Generative adversarial networks
Generators
Image classification
image generation
Image processing
Image synthesis
Interpolation
Kernel
local and global
Modules
semantic-guided
Semantics
Source code
Task analysis
title Local and Global GANs With Semantic-Aware Upsampling for Image Generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20and%20Global%20GANs%20With%20Semantic-Aware%20Upsampling%20for%20Image%20Generation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Tang,%20Hao&rft.date=2023-01-01&rft.volume=45&rft.issue=1&rft.spage=768&rft.epage=784&rft.pages=768-784&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3155989&rft_dat=%3Cproquest_cross%3E2638013283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747610650&rft_id=info:pmid/35263249&rft_ieee_id=9732069&rfr_iscdi=true