Loading…
Local and Global GANs With Semantic-Aware Upsampling for Image Generation
In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2023-01, Vol.45 (1), p.768-784 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543 |
container_end_page | 784 |
container_issue | 1 |
container_start_page | 768 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Tang, Hao Shao, Ling Torr, Philip H.S. Sebe, Nicu |
description | In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As such, we design a local class-specific generative network using semantic maps as guidance, which separately constructs and learns subgenerators for different classes, enabling it to capture finer details. To learn more discriminative class-specific feature representations for the local generation, we also propose a novel classification module. To combine the advantages of both global image-level and local class-specific generation, a joint generation network is designed with an attention fusion module and a dual-discriminator structure embedded. Lastly, we propose a novel semantic-aware upsampling method, which has a larger receptive field and can take far-away pixels that are semantically related for feature upsampling, enabling it to better preserve semantic consistency for instances with the same semantic labels. Extensive experiments on two image generation tasks show the superior performance of the proposed method. State-of-the-art results are established by large margins on both tasks and on nine challenging public benchmarks. The source code and trained models are available at https://github.com/Ha0Tang/LGGAN . |
doi_str_mv | 10.1109/TPAMI.2022.3155989 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2022_3155989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9732069</ieee_id><sourcerecordid>2638013283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZl8bHIsRWuhfoCKx5BNsrplP2qyRfz3bm314GkG5nmHmQehU4LHhGB19fw4uZuPAQOMKeFcSbWHhkRRlVJO1T4aYiIglRLkAB3FuMSYMI7pIRpQDoICU0M0X7TWVIlpXDKr2rxvZ5P7mLyW3Xvy5GvTdKVNJ58m-ORlFU29qsrmLSnakMxr8-aTmW98MF3ZNsfooDBV9Ce7OkIvN9fP09t08TCbTyeL1FLFu1Q46A8yVlLGslyBY6KwioqcM5c5BwV4BZAbI5kCywtDrZNSKSeItI4zOkKX272r0H6sfex0XUbrq8o0vl1H3X8mMaEgaY9e_EOX7To0_XUaMpYJgkXvY4RgS9nQxhh8oVehrE340gTrjWj9I1pvROud6D50vlu9zmvv_iK_ZnvgbAuU3vu_scooYKHoN-8Wf7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747610650</pqid></control><display><type>article</type><title>Local and Global GANs With Semantic-Aware Upsampling for Image Generation</title><source>IEEE Xplore (Online service)</source><creator>Tang, Hao ; Shao, Ling ; Torr, Philip H.S. ; Sebe, Nicu</creator><creatorcontrib>Tang, Hao ; Shao, Ling ; Torr, Philip H.S. ; Sebe, Nicu</creatorcontrib><description>In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As such, we design a local class-specific generative network using semantic maps as guidance, which separately constructs and learns subgenerators for different classes, enabling it to capture finer details. To learn more discriminative class-specific feature representations for the local generation, we also propose a novel classification module. To combine the advantages of both global image-level and local class-specific generation, a joint generation network is designed with an attention fusion module and a dual-discriminator structure embedded. Lastly, we propose a novel semantic-aware upsampling method, which has a larger receptive field and can take far-away pixels that are semantically related for feature upsampling, enabling it to better preserve semantic consistency for instances with the same semantic labels. Extensive experiments on two image generation tasks show the superior performance of the proposed method. State-of-the-art results are established by large margins on both tasks and on nine challenging public benchmarks. The source code and trained models are available at https://github.com/Ha0Tang/LGGAN .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3155989</identifier><identifier>PMID: 35263249</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>feature upsampling ; GANs ; Generative adversarial networks ; Generators ; Image classification ; image generation ; Image processing ; Image synthesis ; Interpolation ; Kernel ; local and global ; Modules ; semantic-guided ; Semantics ; Source code ; Task analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.768-784</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543</citedby><cites>FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543</cites><orcidid>0000-0002-8264-6117 ; 0000-0002-6597-7248 ; 0000-0002-2077-1246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9732069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35263249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><creatorcontrib>Torr, Philip H.S.</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><title>Local and Global GANs With Semantic-Aware Upsampling for Image Generation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As such, we design a local class-specific generative network using semantic maps as guidance, which separately constructs and learns subgenerators for different classes, enabling it to capture finer details. To learn more discriminative class-specific feature representations for the local generation, we also propose a novel classification module. To combine the advantages of both global image-level and local class-specific generation, a joint generation network is designed with an attention fusion module and a dual-discriminator structure embedded. Lastly, we propose a novel semantic-aware upsampling method, which has a larger receptive field and can take far-away pixels that are semantically related for feature upsampling, enabling it to better preserve semantic consistency for instances with the same semantic labels. Extensive experiments on two image generation tasks show the superior performance of the proposed method. State-of-the-art results are established by large margins on both tasks and on nine challenging public benchmarks. The source code and trained models are available at https://github.com/Ha0Tang/LGGAN .</description><subject>feature upsampling</subject><subject>GANs</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image classification</subject><subject>image generation</subject><subject>Image processing</subject><subject>Image synthesis</subject><subject>Interpolation</subject><subject>Kernel</subject><subject>local and global</subject><subject>Modules</subject><subject>semantic-guided</subject><subject>Semantics</subject><subject>Source code</subject><subject>Task analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZl8bHIsRWuhfoCKx5BNsrplP2qyRfz3bm314GkG5nmHmQehU4LHhGB19fw4uZuPAQOMKeFcSbWHhkRRlVJO1T4aYiIglRLkAB3FuMSYMI7pIRpQDoICU0M0X7TWVIlpXDKr2rxvZ5P7mLyW3Xvy5GvTdKVNJ58m-ORlFU29qsrmLSnakMxr8-aTmW98MF3ZNsfooDBV9Ce7OkIvN9fP09t08TCbTyeL1FLFu1Q46A8yVlLGslyBY6KwioqcM5c5BwV4BZAbI5kCywtDrZNSKSeItI4zOkKX272r0H6sfex0XUbrq8o0vl1H3X8mMaEgaY9e_EOX7To0_XUaMpYJgkXvY4RgS9nQxhh8oVehrE340gTrjWj9I1pvROud6D50vlu9zmvv_iK_ZnvgbAuU3vu_scooYKHoN-8Wf7A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Tang, Hao</creator><creator>Shao, Ling</creator><creator>Torr, Philip H.S.</creator><creator>Sebe, Nicu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid><orcidid>https://orcid.org/0000-0002-2077-1246</orcidid></search><sort><creationdate>20230101</creationdate><title>Local and Global GANs With Semantic-Aware Upsampling for Image Generation</title><author>Tang, Hao ; Shao, Ling ; Torr, Philip H.S. ; Sebe, Nicu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>feature upsampling</topic><topic>GANs</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image classification</topic><topic>image generation</topic><topic>Image processing</topic><topic>Image synthesis</topic><topic>Interpolation</topic><topic>Kernel</topic><topic>local and global</topic><topic>Modules</topic><topic>semantic-guided</topic><topic>Semantics</topic><topic>Source code</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><creatorcontrib>Torr, Philip H.S.</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hao</au><au>Shao, Ling</au><au>Torr, Philip H.S.</au><au>Sebe, Nicu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local and Global GANs With Semantic-Aware Upsampling for Image Generation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>45</volume><issue>1</issue><spage>768</spage><epage>784</epage><pages>768-784</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In this paper, we address the task of semantic-guided image generation. One challenge common to most existing image-level generation methods is the difficulty in generating small objects and detailed local textures. To address this, in this work we consider generating images using local context. As such, we design a local class-specific generative network using semantic maps as guidance, which separately constructs and learns subgenerators for different classes, enabling it to capture finer details. To learn more discriminative class-specific feature representations for the local generation, we also propose a novel classification module. To combine the advantages of both global image-level and local class-specific generation, a joint generation network is designed with an attention fusion module and a dual-discriminator structure embedded. Lastly, we propose a novel semantic-aware upsampling method, which has a larger receptive field and can take far-away pixels that are semantically related for feature upsampling, enabling it to better preserve semantic consistency for instances with the same semantic labels. Extensive experiments on two image generation tasks show the superior performance of the proposed method. State-of-the-art results are established by large margins on both tasks and on nine challenging public benchmarks. The source code and trained models are available at https://github.com/Ha0Tang/LGGAN .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35263249</pmid><doi>10.1109/TPAMI.2022.3155989</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid><orcidid>https://orcid.org/0000-0002-2077-1246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.768-784 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2022_3155989 |
source | IEEE Xplore (Online service) |
subjects | feature upsampling GANs Generative adversarial networks Generators Image classification image generation Image processing Image synthesis Interpolation Kernel local and global Modules semantic-guided Semantics Source code Task analysis |
title | Local and Global GANs With Semantic-Aware Upsampling for Image Generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20and%20Global%20GANs%20With%20Semantic-Aware%20Upsampling%20for%20Image%20Generation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Tang,%20Hao&rft.date=2023-01-01&rft.volume=45&rft.issue=1&rft.spage=768&rft.epage=784&rft.pages=768-784&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3155989&rft_dat=%3Cproquest_cross%3E2638013283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-6d2828ac83447b92d46fc936b54d7dd2f2e922baa8492c5fa3cd8899d618cd543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747610650&rft_id=info:pmid/35263249&rft_ieee_id=9732069&rfr_iscdi=true |