Loading…
Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation
Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD m...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2023-03, Vol.45 (3), p.3574-3589 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603 |
container_end_page | 3589 |
container_issue | 3 |
container_start_page | 3574 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Liu, Lingbo Zhu, Yuying Li, Guanbin Wu, Ziyi Bai, Lei Lin, Liang |
description | Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction. Our code is resealed at https://github.com/HCPLab-SYSU/HIAM . |
doi_str_mv | 10.1109/TPAMI.2022.3178184 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2022_3178184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785888</ieee_id><sourcerecordid>2773454785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603</originalsourceid><addsrcrecordid>eNpdkEtLw0AQxxdRbK1-AQUJePGSuo_s61jqo4WW9lDPyyaZhC151E0q-O1Nm9qDMDAD-5vZPz-E7gkeE4L1y2Y9Wc7HFFM6ZkQqoqILNCSa6ZBxpi_REBNBQ6WoGqCbptliTCKO2TUaMC6YFlIP0WZVFa6CYAmtr4OVd7mrwldoWlfZ1tVVsPaQuuQ4fjsbzKAFX-dQQb1vgnmV1b7swUmee8iP8y26ymzRwN2pj9Dn-9tmOgsXq4_5dLIIE8ZJG4ISXeks5VFiNcSaaGkFxMCAYxIrrUCLVOIokjHGSQIQqYRzaTOhLBOYjdBzf3fn6699F9qUrkmgKOwxnqFCUkaFprJDn_6h23rvqy6doVKyiEdS8Y6iPZX4umk8ZGbnXWn9jyHYHJybo3NzcG5Ozrulx9PpfVxCel75k9wBDz3gAOD8rLsPlVLsF2kEhgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454785</pqid></control><display><type>article</type><title>Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Lingbo ; Zhu, Yuying ; Li, Guanbin ; Wu, Ziyi ; Bai, Lei ; Lin, Liang</creator><creatorcontrib>Liu, Lingbo ; Zhu, Yuying ; Li, Guanbin ; Wu, Ziyi ; Bai, Lei ; Lin, Liang</creatorcontrib><description>Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction. Our code is resealed at https://github.com/HCPLab-SYSU/HIAM .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3178184</identifier><identifier>PMID: 35639679</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Agglomeration ; Causality ; Causality and correlation ; Forecasting ; heterogeneous information ; Intelligent transportation systems ; Mathematical analysis ; Mathematical models ; Modelling ; Neural networks ; online metro system ; origin-destination ridership ; Predictive models ; Public transportation ; Ridership ; Sparse matrices ; Task analysis ; Temporal distribution ; Time series analysis ; Transformers ; Transportation networks</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-03, Vol.45 (3), p.3574-3589</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603</citedby><cites>FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603</cites><orcidid>0000-0003-2248-3755 ; 0000-0003-3378-7201 ; 0000-0001-8179-6685 ; 0000-0002-8765-5434 ; 0000-0002-4805-0926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35639679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Zhu, Yuying</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Wu, Ziyi</creatorcontrib><creatorcontrib>Bai, Lei</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><title>Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction. Our code is resealed at https://github.com/HCPLab-SYSU/HIAM .</description><subject>Agglomeration</subject><subject>Causality</subject><subject>Causality and correlation</subject><subject>Forecasting</subject><subject>heterogeneous information</subject><subject>Intelligent transportation systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>online metro system</subject><subject>origin-destination ridership</subject><subject>Predictive models</subject><subject>Public transportation</subject><subject>Ridership</subject><subject>Sparse matrices</subject><subject>Task analysis</subject><subject>Temporal distribution</subject><subject>Time series analysis</subject><subject>Transformers</subject><subject>Transportation networks</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQxxdRbK1-AQUJePGSuo_s61jqo4WW9lDPyyaZhC151E0q-O1Nm9qDMDAD-5vZPz-E7gkeE4L1y2Y9Wc7HFFM6ZkQqoqILNCSa6ZBxpi_REBNBQ6WoGqCbptliTCKO2TUaMC6YFlIP0WZVFa6CYAmtr4OVd7mrwldoWlfZ1tVVsPaQuuQ4fjsbzKAFX-dQQb1vgnmV1b7swUmee8iP8y26ymzRwN2pj9Dn-9tmOgsXq4_5dLIIE8ZJG4ISXeks5VFiNcSaaGkFxMCAYxIrrUCLVOIokjHGSQIQqYRzaTOhLBOYjdBzf3fn6699F9qUrkmgKOwxnqFCUkaFprJDn_6h23rvqy6doVKyiEdS8Y6iPZX4umk8ZGbnXWn9jyHYHJybo3NzcG5Ozrulx9PpfVxCel75k9wBDz3gAOD8rLsPlVLsF2kEhgI</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Liu, Lingbo</creator><creator>Zhu, Yuying</creator><creator>Li, Guanbin</creator><creator>Wu, Ziyi</creator><creator>Bai, Lei</creator><creator>Lin, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0003-3378-7201</orcidid><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0002-8765-5434</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid></search><sort><creationdate>20230301</creationdate><title>Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation</title><author>Liu, Lingbo ; Zhu, Yuying ; Li, Guanbin ; Wu, Ziyi ; Bai, Lei ; Lin, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agglomeration</topic><topic>Causality</topic><topic>Causality and correlation</topic><topic>Forecasting</topic><topic>heterogeneous information</topic><topic>Intelligent transportation systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>online metro system</topic><topic>origin-destination ridership</topic><topic>Predictive models</topic><topic>Public transportation</topic><topic>Ridership</topic><topic>Sparse matrices</topic><topic>Task analysis</topic><topic>Temporal distribution</topic><topic>Time series analysis</topic><topic>Transformers</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Zhu, Yuying</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Wu, Ziyi</creatorcontrib><creatorcontrib>Bai, Lei</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lingbo</au><au>Zhu, Yuying</au><au>Li, Guanbin</au><au>Wu, Ziyi</au><au>Bai, Lei</au><au>Lin, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>45</volume><issue>3</issue><spage>3574</spage><epage>3589</epage><pages>3574-3589</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction. Our code is resealed at https://github.com/HCPLab-SYSU/HIAM .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35639679</pmid><doi>10.1109/TPAMI.2022.3178184</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0003-3378-7201</orcidid><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0002-8765-5434</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-03, Vol.45 (3), p.3574-3589 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2022_3178184 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Agglomeration Causality Causality and correlation Forecasting heterogeneous information Intelligent transportation systems Mathematical analysis Mathematical models Modelling Neural networks online metro system origin-destination ridership Predictive models Public transportation Ridership Sparse matrices Task analysis Temporal distribution Time series analysis Transformers Transportation networks |
title | Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Metro%20Origin-Destination%20Prediction%20via%20Heterogeneous%20Information%20Aggregation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Lingbo&rft.date=2023-03-01&rft.volume=45&rft.issue=3&rft.spage=3574&rft.epage=3589&rft.pages=3574-3589&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3178184&rft_dat=%3Cproquest_cross%3E2773454785%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773454785&rft_id=info:pmid/35639679&rft_ieee_id=9785888&rfr_iscdi=true |