Loading…

Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation

Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2023-03, Vol.45 (3), p.3574-3589
Main Authors: Liu, Lingbo, Zhu, Yuying, Li, Guanbin, Wu, Ziyi, Bai, Lei, Lin, Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603
cites cdi_FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603
container_end_page 3589
container_issue 3
container_start_page 3574
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Liu, Lingbo
Zhu, Yuying
Li, Guanbin
Wu, Ziyi
Bai, Lei
Lin, Liang
description Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction. Our code is resealed at https://github.com/HCPLab-SYSU/HIAM .
doi_str_mv 10.1109/TPAMI.2022.3178184
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2022_3178184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785888</ieee_id><sourcerecordid>2773454785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603</originalsourceid><addsrcrecordid>eNpdkEtLw0AQxxdRbK1-AQUJePGSuo_s61jqo4WW9lDPyyaZhC151E0q-O1Nm9qDMDAD-5vZPz-E7gkeE4L1y2Y9Wc7HFFM6ZkQqoqILNCSa6ZBxpi_REBNBQ6WoGqCbptliTCKO2TUaMC6YFlIP0WZVFa6CYAmtr4OVd7mrwldoWlfZ1tVVsPaQuuQ4fjsbzKAFX-dQQb1vgnmV1b7swUmee8iP8y26ymzRwN2pj9Dn-9tmOgsXq4_5dLIIE8ZJG4ISXeks5VFiNcSaaGkFxMCAYxIrrUCLVOIokjHGSQIQqYRzaTOhLBOYjdBzf3fn6699F9qUrkmgKOwxnqFCUkaFprJDn_6h23rvqy6doVKyiEdS8Y6iPZX4umk8ZGbnXWn9jyHYHJybo3NzcG5Ozrulx9PpfVxCel75k9wBDz3gAOD8rLsPlVLsF2kEhgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454785</pqid></control><display><type>article</type><title>Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Lingbo ; Zhu, Yuying ; Li, Guanbin ; Wu, Ziyi ; Bai, Lei ; Lin, Liang</creator><creatorcontrib>Liu, Lingbo ; Zhu, Yuying ; Li, Guanbin ; Wu, Ziyi ; Bai, Lei ; Lin, Liang</creatorcontrib><description>Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction. Our code is resealed at https://github.com/HCPLab-SYSU/HIAM .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3178184</identifier><identifier>PMID: 35639679</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Agglomeration ; Causality ; Causality and correlation ; Forecasting ; heterogeneous information ; Intelligent transportation systems ; Mathematical analysis ; Mathematical models ; Modelling ; Neural networks ; online metro system ; origin-destination ridership ; Predictive models ; Public transportation ; Ridership ; Sparse matrices ; Task analysis ; Temporal distribution ; Time series analysis ; Transformers ; Transportation networks</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-03, Vol.45 (3), p.3574-3589</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603</citedby><cites>FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603</cites><orcidid>0000-0003-2248-3755 ; 0000-0003-3378-7201 ; 0000-0001-8179-6685 ; 0000-0002-8765-5434 ; 0000-0002-4805-0926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35639679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Zhu, Yuying</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Wu, Ziyi</creatorcontrib><creatorcontrib>Bai, Lei</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><title>Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction. Our code is resealed at https://github.com/HCPLab-SYSU/HIAM .</description><subject>Agglomeration</subject><subject>Causality</subject><subject>Causality and correlation</subject><subject>Forecasting</subject><subject>heterogeneous information</subject><subject>Intelligent transportation systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>online metro system</subject><subject>origin-destination ridership</subject><subject>Predictive models</subject><subject>Public transportation</subject><subject>Ridership</subject><subject>Sparse matrices</subject><subject>Task analysis</subject><subject>Temporal distribution</subject><subject>Time series analysis</subject><subject>Transformers</subject><subject>Transportation networks</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQxxdRbK1-AQUJePGSuo_s61jqo4WW9lDPyyaZhC151E0q-O1Nm9qDMDAD-5vZPz-E7gkeE4L1y2Y9Wc7HFFM6ZkQqoqILNCSa6ZBxpi_REBNBQ6WoGqCbptliTCKO2TUaMC6YFlIP0WZVFa6CYAmtr4OVd7mrwldoWlfZ1tVVsPaQuuQ4fjsbzKAFX-dQQb1vgnmV1b7swUmee8iP8y26ymzRwN2pj9Dn-9tmOgsXq4_5dLIIE8ZJG4ISXeks5VFiNcSaaGkFxMCAYxIrrUCLVOIokjHGSQIQqYRzaTOhLBOYjdBzf3fn6699F9qUrkmgKOwxnqFCUkaFprJDn_6h23rvqy6doVKyiEdS8Y6iPZX4umk8ZGbnXWn9jyHYHJybo3NzcG5Ozrulx9PpfVxCel75k9wBDz3gAOD8rLsPlVLsF2kEhgI</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Liu, Lingbo</creator><creator>Zhu, Yuying</creator><creator>Li, Guanbin</creator><creator>Wu, Ziyi</creator><creator>Bai, Lei</creator><creator>Lin, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0003-3378-7201</orcidid><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0002-8765-5434</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid></search><sort><creationdate>20230301</creationdate><title>Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation</title><author>Liu, Lingbo ; Zhu, Yuying ; Li, Guanbin ; Wu, Ziyi ; Bai, Lei ; Lin, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agglomeration</topic><topic>Causality</topic><topic>Causality and correlation</topic><topic>Forecasting</topic><topic>heterogeneous information</topic><topic>Intelligent transportation systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>online metro system</topic><topic>origin-destination ridership</topic><topic>Predictive models</topic><topic>Public transportation</topic><topic>Ridership</topic><topic>Sparse matrices</topic><topic>Task analysis</topic><topic>Temporal distribution</topic><topic>Time series analysis</topic><topic>Transformers</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Zhu, Yuying</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Wu, Ziyi</creatorcontrib><creatorcontrib>Bai, Lei</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lingbo</au><au>Zhu, Yuying</au><au>Li, Guanbin</au><au>Wu, Ziyi</au><au>Bai, Lei</au><au>Lin, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>45</volume><issue>3</issue><spage>3574</spage><epage>3589</epage><pages>3574-3589</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction. Our code is resealed at https://github.com/HCPLab-SYSU/HIAM .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35639679</pmid><doi>10.1109/TPAMI.2022.3178184</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0003-3378-7201</orcidid><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0002-8765-5434</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-03, Vol.45 (3), p.3574-3589
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2022_3178184
source IEEE Electronic Library (IEL) Journals
subjects Agglomeration
Causality
Causality and correlation
Forecasting
heterogeneous information
Intelligent transportation systems
Mathematical analysis
Mathematical models
Modelling
Neural networks
online metro system
origin-destination ridership
Predictive models
Public transportation
Ridership
Sparse matrices
Task analysis
Temporal distribution
Time series analysis
Transformers
Transportation networks
title Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Metro%20Origin-Destination%20Prediction%20via%20Heterogeneous%20Information%20Aggregation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Lingbo&rft.date=2023-03-01&rft.volume=45&rft.issue=3&rft.spage=3574&rft.epage=3589&rft.pages=3574-3589&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3178184&rft_dat=%3Cproquest_cross%3E2773454785%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-e86e869fd54ca9eb9197a6ebe3e501b898e96d70447b00ccee48c557af68a3603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773454785&rft_id=info:pmid/35639679&rft_ieee_id=9785888&rfr_iscdi=true