Loading…

Adaptive Feature Selection With Augmented Attributes

In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse te...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2023-08, Vol.45 (8), p.9306-9324
Main Authors: Hou, Chenping, Fan, Ruidong, Zeng, Ling-Li, Hu, Dewen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393
cites cdi_FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393
container_end_page 9324
container_issue 8
container_start_page 9306
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Hou, Chenping
Fan, Ruidong
Zeng, Ling-Li
Hu, Dewen
description In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse testing ways, we get more brain image features over time. The accumulation of different types of features will unavoidably bring difficulties in manipulating the high-dimensional data. It is challenging to design an algorithm to select valuable features in this feature incremental scenario. To address this important but rarely studied problem, we propose a novel Adaptive Feature Selection method (AFS). It enables the reusability of the feature selection model trained on previous features and adapts it to fit the feature selection requirements on all features automatically. Besides, an ideal \ell _{0} ℓ0 -norm sparse constraint for feature selection is imposed with a proposed effective solving strategy. We present the theoretical analyses about the generalization bound and convergence behavior. After tackling this problem in a one-shot case, we extend it to the multi-shot scenario. Plenty of experimental results demonstrate the effectiveness of reusing previous features and the superior of \ell _{0} ℓ0 -norm constraint in various aspects, together with its effectiveness in discriminating schizophrenic patients from healthy controls.
doi_str_mv 10.1109/TPAMI.2023.3238011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3238011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10021870</ieee_id><sourcerecordid>2797145087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRbK2-gIgEvHhJ3dlNsrvHUKwWKgpWPC6bZKKRpKm7G8G3N7FVxNMc5vt_Zj5CToFOAai6Wj2kd4spo4xPOeOSAuyRMSiuQh5ztU_GFBIWSsnkiBw590YpRDHlh2TEBWUgFYxJlBZm46sPDOZofGcxeMQac1-16-C58q9B2r00uPZYBKn3tso6j-6YHJSmdniymxPyNL9ezW7D5f3NYpYuw5zHzIfRcFNmRKZEySNjpCyiMi4oU0rJGEuABIuoR3JlIkiyBEQWMyVkwaEArviEXG57N7Z979B53VQux7o2a2w7p5lQYnhJih69-Ie-tZ1d99dpJjn0DI-hp9iWym3rnMVSb2zVGPupgerBqf52qgeneue0D53vqrusweI38iOxB862QIWIfxqHtaD8C_PkeD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831508351</pqid></control><display><type>article</type><title>Adaptive Feature Selection With Augmented Attributes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hou, Chenping ; Fan, Ruidong ; Zeng, Ling-Li ; Hu, Dewen</creator><creatorcontrib>Hou, Chenping ; Fan, Ruidong ; Zeng, Ling-Li ; Hu, Dewen</creatorcontrib><description><![CDATA[In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse testing ways, we get more brain image features over time. The accumulation of different types of features will unavoidably bring difficulties in manipulating the high-dimensional data. It is challenging to design an algorithm to select valuable features in this feature incremental scenario. To address this important but rarely studied problem, we propose a novel Adaptive Feature Selection method (AFS). It enables the reusability of the feature selection model trained on previous features and adapts it to fit the feature selection requirements on all features automatically. Besides, an ideal <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq1-3238011.gif"/> </inline-formula>-norm sparse constraint for feature selection is imposed with a proposed effective solving strategy. We present the theoretical analyses about the generalization bound and convergence behavior. After tackling this problem in a one-shot case, we extend it to the multi-shot scenario. Plenty of experimental results demonstrate the effectiveness of reusing previous features and the superior of <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq2-3238011.gif"/> </inline-formula>-norm constraint in various aspects, together with its effectiveness in discriminating schizophrenic patients from healthy controls.]]></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3238011</identifier><identifier>PMID: 37021891</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell _{0}</tex-math> </inline-formula> </named-content> <mml:math> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> <inline-graphic xlink:href="hou-ieq3-3238011.gif" xlink:type="simple"/> </named-content>-norm ; Algorithms ; Augmented attributes ; Clustering algorithms ; Convergence ; Covariance matrices ; Data collection ; Data models ; Effectiveness ; Feature extraction ; Feature selection ; Medical imaging ; Optimization ; Principal component analysis ; reusability]]></subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-08, Vol.45 (8), p.9306-9324</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393</citedby><cites>FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393</cites><orcidid>0000-0002-0515-256X ; 0000-0002-9335-0469 ; 0000-0001-7357-0053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10021870$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37021891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Chenping</creatorcontrib><creatorcontrib>Fan, Ruidong</creatorcontrib><creatorcontrib>Zeng, Ling-Li</creatorcontrib><creatorcontrib>Hu, Dewen</creatorcontrib><title>Adaptive Feature Selection With Augmented Attributes</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description><![CDATA[In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse testing ways, we get more brain image features over time. The accumulation of different types of features will unavoidably bring difficulties in manipulating the high-dimensional data. It is challenging to design an algorithm to select valuable features in this feature incremental scenario. To address this important but rarely studied problem, we propose a novel Adaptive Feature Selection method (AFS). It enables the reusability of the feature selection model trained on previous features and adapts it to fit the feature selection requirements on all features automatically. Besides, an ideal <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq1-3238011.gif"/> </inline-formula>-norm sparse constraint for feature selection is imposed with a proposed effective solving strategy. We present the theoretical analyses about the generalization bound and convergence behavior. After tackling this problem in a one-shot case, we extend it to the multi-shot scenario. Plenty of experimental results demonstrate the effectiveness of reusing previous features and the superior of <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq2-3238011.gif"/> </inline-formula>-norm constraint in various aspects, together with its effectiveness in discriminating schizophrenic patients from healthy controls.]]></description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell _{0}</tex-math> </inline-formula> </named-content> <mml:math> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> <inline-graphic xlink:href="hou-ieq3-3238011.gif" xlink:type="simple"/> </named-content>-norm]]></subject><subject>Algorithms</subject><subject>Augmented attributes</subject><subject>Clustering algorithms</subject><subject>Convergence</subject><subject>Covariance matrices</subject><subject>Data collection</subject><subject>Data models</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Medical imaging</subject><subject>Optimization</subject><subject>Principal component analysis</subject><subject>reusability</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKw0AQhhdRbK2-gIgEvHhJ3dlNsrvHUKwWKgpWPC6bZKKRpKm7G8G3N7FVxNMc5vt_Zj5CToFOAai6Wj2kd4spo4xPOeOSAuyRMSiuQh5ztU_GFBIWSsnkiBw590YpRDHlh2TEBWUgFYxJlBZm46sPDOZofGcxeMQac1-16-C58q9B2r00uPZYBKn3tso6j-6YHJSmdniymxPyNL9ezW7D5f3NYpYuw5zHzIfRcFNmRKZEySNjpCyiMi4oU0rJGEuABIuoR3JlIkiyBEQWMyVkwaEArviEXG57N7Z979B53VQux7o2a2w7p5lQYnhJih69-Ie-tZ1d99dpJjn0DI-hp9iWym3rnMVSb2zVGPupgerBqf52qgeneue0D53vqrusweI38iOxB862QIWIfxqHtaD8C_PkeD4</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Hou, Chenping</creator><creator>Fan, Ruidong</creator><creator>Zeng, Ling-Li</creator><creator>Hu, Dewen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0515-256X</orcidid><orcidid>https://orcid.org/0000-0002-9335-0469</orcidid><orcidid>https://orcid.org/0000-0001-7357-0053</orcidid></search><sort><creationdate>20230801</creationdate><title>Adaptive Feature Selection With Augmented Attributes</title><author>Hou, Chenping ; Fan, Ruidong ; Zeng, Ling-Li ; Hu, Dewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell _{0}</tex-math> </inline-formula> </named-content> <mml:math> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> <inline-graphic xlink:href="hou-ieq3-3238011.gif" xlink:type="simple"/> </named-content>-norm]]></topic><topic>Algorithms</topic><topic>Augmented attributes</topic><topic>Clustering algorithms</topic><topic>Convergence</topic><topic>Covariance matrices</topic><topic>Data collection</topic><topic>Data models</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Medical imaging</topic><topic>Optimization</topic><topic>Principal component analysis</topic><topic>reusability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Chenping</creatorcontrib><creatorcontrib>Fan, Ruidong</creatorcontrib><creatorcontrib>Zeng, Ling-Li</creatorcontrib><creatorcontrib>Hu, Dewen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Chenping</au><au>Fan, Ruidong</au><au>Zeng, Ling-Li</au><au>Hu, Dewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Feature Selection With Augmented Attributes</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>45</volume><issue>8</issue><spage>9306</spage><epage>9324</epage><pages>9306-9324</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract><![CDATA[In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse testing ways, we get more brain image features over time. The accumulation of different types of features will unavoidably bring difficulties in manipulating the high-dimensional data. It is challenging to design an algorithm to select valuable features in this feature incremental scenario. To address this important but rarely studied problem, we propose a novel Adaptive Feature Selection method (AFS). It enables the reusability of the feature selection model trained on previous features and adapts it to fit the feature selection requirements on all features automatically. Besides, an ideal <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq1-3238011.gif"/> </inline-formula>-norm sparse constraint for feature selection is imposed with a proposed effective solving strategy. We present the theoretical analyses about the generalization bound and convergence behavior. After tackling this problem in a one-shot case, we extend it to the multi-shot scenario. Plenty of experimental results demonstrate the effectiveness of reusing previous features and the superior of <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq2-3238011.gif"/> </inline-formula>-norm constraint in various aspects, together with its effectiveness in discriminating schizophrenic patients from healthy controls.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>37021891</pmid><doi>10.1109/TPAMI.2023.3238011</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0515-256X</orcidid><orcidid>https://orcid.org/0000-0002-9335-0469</orcidid><orcidid>https://orcid.org/0000-0001-7357-0053</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-08, Vol.45 (8), p.9306-9324
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2023_3238011
source IEEE Electronic Library (IEL) Journals
subjects <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell _{0}</tex-math> </inline-formula> </named-content> <mml:math> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> <inline-graphic xlink:href="hou-ieq3-3238011.gif" xlink:type="simple"/> </named-content>-norm
Algorithms
Augmented attributes
Clustering algorithms
Convergence
Covariance matrices
Data collection
Data models
Effectiveness
Feature extraction
Feature selection
Medical imaging
Optimization
Principal component analysis
reusability
title Adaptive Feature Selection With Augmented Attributes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Feature%20Selection%20With%20Augmented%20Attributes&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Hou,%20Chenping&rft.date=2023-08-01&rft.volume=45&rft.issue=8&rft.spage=9306&rft.epage=9324&rft.pages=9306-9324&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3238011&rft_dat=%3Cproquest_cross%3E2797145087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831508351&rft_id=info:pmid/37021891&rft_ieee_id=10021870&rfr_iscdi=true