Loading…
Adaptive Feature Selection With Augmented Attributes
In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse te...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2023-08, Vol.45 (8), p.9306-9324 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393 |
container_end_page | 9324 |
container_issue | 8 |
container_start_page | 9306 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Hou, Chenping Fan, Ruidong Zeng, Ling-Li Hu, Dewen |
description | In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse testing ways, we get more brain image features over time. The accumulation of different types of features will unavoidably bring difficulties in manipulating the high-dimensional data. It is challenging to design an algorithm to select valuable features in this feature incremental scenario. To address this important but rarely studied problem, we propose a novel Adaptive Feature Selection method (AFS). It enables the reusability of the feature selection model trained on previous features and adapts it to fit the feature selection requirements on all features automatically. Besides, an ideal \ell _{0} ℓ0 -norm sparse constraint for feature selection is imposed with a proposed effective solving strategy. We present the theoretical analyses about the generalization bound and convergence behavior. After tackling this problem in a one-shot case, we extend it to the multi-shot scenario. Plenty of experimental results demonstrate the effectiveness of reusing previous features and the superior of \ell _{0} ℓ0 -norm constraint in various aspects, together with its effectiveness in discriminating schizophrenic patients from healthy controls. |
doi_str_mv | 10.1109/TPAMI.2023.3238011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3238011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10021870</ieee_id><sourcerecordid>2797145087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRbK2-gIgEvHhJ3dlNsrvHUKwWKgpWPC6bZKKRpKm7G8G3N7FVxNMc5vt_Zj5CToFOAai6Wj2kd4spo4xPOeOSAuyRMSiuQh5ztU_GFBIWSsnkiBw590YpRDHlh2TEBWUgFYxJlBZm46sPDOZofGcxeMQac1-16-C58q9B2r00uPZYBKn3tso6j-6YHJSmdniymxPyNL9ezW7D5f3NYpYuw5zHzIfRcFNmRKZEySNjpCyiMi4oU0rJGEuABIuoR3JlIkiyBEQWMyVkwaEArviEXG57N7Z979B53VQux7o2a2w7p5lQYnhJih69-Ie-tZ1d99dpJjn0DI-hp9iWym3rnMVSb2zVGPupgerBqf52qgeneue0D53vqrusweI38iOxB862QIWIfxqHtaD8C_PkeD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831508351</pqid></control><display><type>article</type><title>Adaptive Feature Selection With Augmented Attributes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hou, Chenping ; Fan, Ruidong ; Zeng, Ling-Li ; Hu, Dewen</creator><creatorcontrib>Hou, Chenping ; Fan, Ruidong ; Zeng, Ling-Li ; Hu, Dewen</creatorcontrib><description><![CDATA[In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse testing ways, we get more brain image features over time. The accumulation of different types of features will unavoidably bring difficulties in manipulating the high-dimensional data. It is challenging to design an algorithm to select valuable features in this feature incremental scenario. To address this important but rarely studied problem, we propose a novel Adaptive Feature Selection method (AFS). It enables the reusability of the feature selection model trained on previous features and adapts it to fit the feature selection requirements on all features automatically. Besides, an ideal <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq1-3238011.gif"/> </inline-formula>-norm sparse constraint for feature selection is imposed with a proposed effective solving strategy. We present the theoretical analyses about the generalization bound and convergence behavior. After tackling this problem in a one-shot case, we extend it to the multi-shot scenario. Plenty of experimental results demonstrate the effectiveness of reusing previous features and the superior of <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq2-3238011.gif"/> </inline-formula>-norm constraint in various aspects, together with its effectiveness in discriminating schizophrenic patients from healthy controls.]]></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3238011</identifier><identifier>PMID: 37021891</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell _{0}</tex-math> </inline-formula> </named-content> <mml:math> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> <inline-graphic xlink:href="hou-ieq3-3238011.gif" xlink:type="simple"/> </named-content>-norm ; Algorithms ; Augmented attributes ; Clustering algorithms ; Convergence ; Covariance matrices ; Data collection ; Data models ; Effectiveness ; Feature extraction ; Feature selection ; Medical imaging ; Optimization ; Principal component analysis ; reusability]]></subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-08, Vol.45 (8), p.9306-9324</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393</citedby><cites>FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393</cites><orcidid>0000-0002-0515-256X ; 0000-0002-9335-0469 ; 0000-0001-7357-0053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10021870$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37021891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Chenping</creatorcontrib><creatorcontrib>Fan, Ruidong</creatorcontrib><creatorcontrib>Zeng, Ling-Li</creatorcontrib><creatorcontrib>Hu, Dewen</creatorcontrib><title>Adaptive Feature Selection With Augmented Attributes</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description><![CDATA[In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse testing ways, we get more brain image features over time. The accumulation of different types of features will unavoidably bring difficulties in manipulating the high-dimensional data. It is challenging to design an algorithm to select valuable features in this feature incremental scenario. To address this important but rarely studied problem, we propose a novel Adaptive Feature Selection method (AFS). It enables the reusability of the feature selection model trained on previous features and adapts it to fit the feature selection requirements on all features automatically. Besides, an ideal <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq1-3238011.gif"/> </inline-formula>-norm sparse constraint for feature selection is imposed with a proposed effective solving strategy. We present the theoretical analyses about the generalization bound and convergence behavior. After tackling this problem in a one-shot case, we extend it to the multi-shot scenario. Plenty of experimental results demonstrate the effectiveness of reusing previous features and the superior of <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq2-3238011.gif"/> </inline-formula>-norm constraint in various aspects, together with its effectiveness in discriminating schizophrenic patients from healthy controls.]]></description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell _{0}</tex-math> </inline-formula> </named-content> <mml:math> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> <inline-graphic xlink:href="hou-ieq3-3238011.gif" xlink:type="simple"/> </named-content>-norm]]></subject><subject>Algorithms</subject><subject>Augmented attributes</subject><subject>Clustering algorithms</subject><subject>Convergence</subject><subject>Covariance matrices</subject><subject>Data collection</subject><subject>Data models</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Medical imaging</subject><subject>Optimization</subject><subject>Principal component analysis</subject><subject>reusability</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKw0AQhhdRbK2-gIgEvHhJ3dlNsrvHUKwWKgpWPC6bZKKRpKm7G8G3N7FVxNMc5vt_Zj5CToFOAai6Wj2kd4spo4xPOeOSAuyRMSiuQh5ztU_GFBIWSsnkiBw590YpRDHlh2TEBWUgFYxJlBZm46sPDOZofGcxeMQac1-16-C58q9B2r00uPZYBKn3tso6j-6YHJSmdniymxPyNL9ezW7D5f3NYpYuw5zHzIfRcFNmRKZEySNjpCyiMi4oU0rJGEuABIuoR3JlIkiyBEQWMyVkwaEArviEXG57N7Z979B53VQux7o2a2w7p5lQYnhJih69-Ie-tZ1d99dpJjn0DI-hp9iWym3rnMVSb2zVGPupgerBqf52qgeneue0D53vqrusweI38iOxB862QIWIfxqHtaD8C_PkeD4</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Hou, Chenping</creator><creator>Fan, Ruidong</creator><creator>Zeng, Ling-Li</creator><creator>Hu, Dewen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0515-256X</orcidid><orcidid>https://orcid.org/0000-0002-9335-0469</orcidid><orcidid>https://orcid.org/0000-0001-7357-0053</orcidid></search><sort><creationdate>20230801</creationdate><title>Adaptive Feature Selection With Augmented Attributes</title><author>Hou, Chenping ; Fan, Ruidong ; Zeng, Ling-Li ; Hu, Dewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell _{0}</tex-math> </inline-formula> </named-content> <mml:math> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> <inline-graphic xlink:href="hou-ieq3-3238011.gif" xlink:type="simple"/> </named-content>-norm]]></topic><topic>Algorithms</topic><topic>Augmented attributes</topic><topic>Clustering algorithms</topic><topic>Convergence</topic><topic>Covariance matrices</topic><topic>Data collection</topic><topic>Data models</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Medical imaging</topic><topic>Optimization</topic><topic>Principal component analysis</topic><topic>reusability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Chenping</creatorcontrib><creatorcontrib>Fan, Ruidong</creatorcontrib><creatorcontrib>Zeng, Ling-Li</creatorcontrib><creatorcontrib>Hu, Dewen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Chenping</au><au>Fan, Ruidong</au><au>Zeng, Ling-Li</au><au>Hu, Dewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Feature Selection With Augmented Attributes</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>45</volume><issue>8</issue><spage>9306</spage><epage>9324</epage><pages>9306-9324</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract><![CDATA[In many dynamic environment applications, with the evolution of data collection ways, the data attributes are incremental and the samples are stored with accumulated feature spaces gradually. For instance, in the neuroimaging-based diagnosis of neuropsychiatric disorders, with emerging of diverse testing ways, we get more brain image features over time. The accumulation of different types of features will unavoidably bring difficulties in manipulating the high-dimensional data. It is challenging to design an algorithm to select valuable features in this feature incremental scenario. To address this important but rarely studied problem, we propose a novel Adaptive Feature Selection method (AFS). It enables the reusability of the feature selection model trained on previous features and adapts it to fit the feature selection requirements on all features automatically. Besides, an ideal <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq1-3238011.gif"/> </inline-formula>-norm sparse constraint for feature selection is imposed with a proposed effective solving strategy. We present the theoretical analyses about the generalization bound and convergence behavior. After tackling this problem in a one-shot case, we extend it to the multi-shot scenario. Plenty of experimental results demonstrate the effectiveness of reusing previous features and the superior of <inline-formula><tex-math notation="LaTeX">\ell _{0}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math><inline-graphic xlink:href="hou-ieq2-3238011.gif"/> </inline-formula>-norm constraint in various aspects, together with its effectiveness in discriminating schizophrenic patients from healthy controls.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>37021891</pmid><doi>10.1109/TPAMI.2023.3238011</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0515-256X</orcidid><orcidid>https://orcid.org/0000-0002-9335-0469</orcidid><orcidid>https://orcid.org/0000-0001-7357-0053</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-08, Vol.45 (8), p.9306-9324 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2023_3238011 |
source | IEEE Electronic Library (IEL) Journals |
subjects | <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell _{0}</tex-math> </inline-formula> </named-content> <mml:math> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> <inline-graphic xlink:href="hou-ieq3-3238011.gif" xlink:type="simple"/> </named-content>-norm Algorithms Augmented attributes Clustering algorithms Convergence Covariance matrices Data collection Data models Effectiveness Feature extraction Feature selection Medical imaging Optimization Principal component analysis reusability |
title | Adaptive Feature Selection With Augmented Attributes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Feature%20Selection%20With%20Augmented%20Attributes&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Hou,%20Chenping&rft.date=2023-08-01&rft.volume=45&rft.issue=8&rft.spage=9306&rft.epage=9324&rft.pages=9306-9324&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3238011&rft_dat=%3Cproquest_cross%3E2797145087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-43801ba7b97f34aa88d4f5d0299985ef116ed401bc9a416b617b52978d31d1393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831508351&rft_id=info:pmid/37021891&rft_ieee_id=10021870&rfr_iscdi=true |