Loading…

Learnable Distribution Calibration for Few-Shot Class-Incremental Learning

Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2023-10, Vol.45 (10), p.12699-12706
Main Authors: Liu, Binghao, Yang, Boyu, Xie, Lingxi, Wang, Ren, Tian, Qi, Ye, Qixiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03
cites cdi_FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03
container_end_page 12706
container_issue 10
container_start_page 12699
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Liu, Binghao
Yang, Boyu
Xie, Lingxi
Wang, Ren
Tian, Qi
Ye, Qixiang
description Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid 'forgetting', as well as estimating distributions and augmenting samples for new classes to alleviate 'over-fitting' caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL's flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC respectively outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%. LDC's effectiveness is also validated on few-shot learning scenarios.
doi_str_mv 10.1109/TPAMI.2023.3273291
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3273291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10119176</ieee_id><sourcerecordid>2810920138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobk7_gIgUvPGmM8lJ2-RSqtPJRMF5XdLkVDu6diYt4r-3-1DEq_NePO8L5yHklNExY1RdzZ-vH6djTjmMgSfAFdsjQ6ZAhRCB2idDymIeSsnlgBx5v6CUiYjCIRlA0icl2JA8zFC7WucVBjelb12Zd23Z1EGqqzJ3epOLxgUT_Axf3ps2SCvtfTitjcMl1q2ugs1CWb8dk4NCVx5PdndEXie38_Q-nD3dTdPrWWgg4m1ooUi0sLEslJAoWGwTHSdGm0RIk9sCbASIygDkUUK5sFoaaWMhuNAWLYURudzurlzz0aFvs2XpDVaVrrHpfMZlL4dTBrJHL_6hi6br363WVNw7AEGjnuJbyrjGe4dFtnLlUruvjNFsbTrbmM7WprOd6b50vpvu8iXa38qP2h442wIlIv5ZZEyxJIZvOuOB8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861453405</pqid></control><display><type>article</type><title>Learnable Distribution Calibration for Few-Shot Class-Incremental Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Binghao ; Yang, Boyu ; Xie, Lingxi ; Wang, Ren ; Tian, Qi ; Ye, Qixiang</creator><creatorcontrib>Liu, Binghao ; Yang, Boyu ; Xie, Lingxi ; Wang, Ren ; Tian, Qi ; Ye, Qixiang</creatorcontrib><description>Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid 'forgetting', as well as estimating distributions and augmenting samples for new classes to alleviate 'over-fitting' caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL's flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC respectively outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%. LDC's effectiveness is also validated on few-shot learning scenarios.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3273291</identifier><identifier>PMID: 37145941</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Calibration ; Covariance matrices ; Covariance matrix ; Feature extraction ; Few-shot learning ; incremental learning ; learnable distribution calibration ; Learning ; Mathematical analysis ; parameterized calibration unit ; Power capacitors ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-10, Vol.45 (10), p.12699-12706</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03</citedby><cites>FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03</cites><orcidid>0000-0003-1215-6259 ; 0000-0001-7610-5392 ; 0000-0003-3799-6625 ; 0000-0003-4831-9451 ; 0000-0002-7252-5047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10119176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37145941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Binghao</creatorcontrib><creatorcontrib>Yang, Boyu</creatorcontrib><creatorcontrib>Xie, Lingxi</creatorcontrib><creatorcontrib>Wang, Ren</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><title>Learnable Distribution Calibration for Few-Shot Class-Incremental Learning</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid 'forgetting', as well as estimating distributions and augmenting samples for new classes to alleviate 'over-fitting' caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL's flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC respectively outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%. LDC's effectiveness is also validated on few-shot learning scenarios.</description><subject>Adaptation models</subject><subject>Calibration</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Feature extraction</subject><subject>Few-shot learning</subject><subject>incremental learning</subject><subject>learnable distribution calibration</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>parameterized calibration unit</subject><subject>Power capacitors</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMobk7_gIgUvPGmM8lJ2-RSqtPJRMF5XdLkVDu6diYt4r-3-1DEq_NePO8L5yHklNExY1RdzZ-vH6djTjmMgSfAFdsjQ6ZAhRCB2idDymIeSsnlgBx5v6CUiYjCIRlA0icl2JA8zFC7WucVBjelb12Zd23Z1EGqqzJ3epOLxgUT_Axf3ps2SCvtfTitjcMl1q2ugs1CWb8dk4NCVx5PdndEXie38_Q-nD3dTdPrWWgg4m1ooUi0sLEslJAoWGwTHSdGm0RIk9sCbASIygDkUUK5sFoaaWMhuNAWLYURudzurlzz0aFvs2XpDVaVrrHpfMZlL4dTBrJHL_6hi6br363WVNw7AEGjnuJbyrjGe4dFtnLlUruvjNFsbTrbmM7WprOd6b50vpvu8iXa38qP2h442wIlIv5ZZEyxJIZvOuOB8w</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liu, Binghao</creator><creator>Yang, Boyu</creator><creator>Xie, Lingxi</creator><creator>Wang, Ren</creator><creator>Tian, Qi</creator><creator>Ye, Qixiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1215-6259</orcidid><orcidid>https://orcid.org/0000-0001-7610-5392</orcidid><orcidid>https://orcid.org/0000-0003-3799-6625</orcidid><orcidid>https://orcid.org/0000-0003-4831-9451</orcidid><orcidid>https://orcid.org/0000-0002-7252-5047</orcidid></search><sort><creationdate>20231001</creationdate><title>Learnable Distribution Calibration for Few-Shot Class-Incremental Learning</title><author>Liu, Binghao ; Yang, Boyu ; Xie, Lingxi ; Wang, Ren ; Tian, Qi ; Ye, Qixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Calibration</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Feature extraction</topic><topic>Few-shot learning</topic><topic>incremental learning</topic><topic>learnable distribution calibration</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>parameterized calibration unit</topic><topic>Power capacitors</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Binghao</creatorcontrib><creatorcontrib>Yang, Boyu</creatorcontrib><creatorcontrib>Xie, Lingxi</creatorcontrib><creatorcontrib>Wang, Ren</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Binghao</au><au>Yang, Boyu</au><au>Xie, Lingxi</au><au>Wang, Ren</au><au>Tian, Qi</au><au>Ye, Qixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learnable Distribution Calibration for Few-Shot Class-Incremental Learning</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>45</volume><issue>10</issue><spage>12699</spage><epage>12706</epage><pages>12699-12706</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid 'forgetting', as well as estimating distributions and augmenting samples for new classes to alleviate 'over-fitting' caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL's flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC respectively outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%. LDC's effectiveness is also validated on few-shot learning scenarios.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37145941</pmid><doi>10.1109/TPAMI.2023.3273291</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1215-6259</orcidid><orcidid>https://orcid.org/0000-0001-7610-5392</orcidid><orcidid>https://orcid.org/0000-0003-3799-6625</orcidid><orcidid>https://orcid.org/0000-0003-4831-9451</orcidid><orcidid>https://orcid.org/0000-0002-7252-5047</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-10, Vol.45 (10), p.12699-12706
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2023_3273291
source IEEE Electronic Library (IEL) Journals
subjects Adaptation models
Calibration
Covariance matrices
Covariance matrix
Feature extraction
Few-shot learning
incremental learning
learnable distribution calibration
Learning
Mathematical analysis
parameterized calibration unit
Power capacitors
Task analysis
Training
title Learnable Distribution Calibration for Few-Shot Class-Incremental Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learnable%20Distribution%20Calibration%20for%20Few-Shot%20Class-Incremental%20Learning&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Binghao&rft.date=2023-10-01&rft.volume=45&rft.issue=10&rft.spage=12699&rft.epage=12706&rft.pages=12699-12706&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3273291&rft_dat=%3Cproquest_cross%3E2810920138%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861453405&rft_id=info:pmid/37145941&rft_ieee_id=10119176&rfr_iscdi=true