Loading…
Learnable Distribution Calibration for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2023-10, Vol.45 (10), p.12699-12706 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03 |
container_end_page | 12706 |
container_issue | 10 |
container_start_page | 12699 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Liu, Binghao Yang, Boyu Xie, Lingxi Wang, Ren Tian, Qi Ye, Qixiang |
description | Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid 'forgetting', as well as estimating distributions and augmenting samples for new classes to alleviate 'over-fitting' caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL's flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC respectively outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%. LDC's effectiveness is also validated on few-shot learning scenarios. |
doi_str_mv | 10.1109/TPAMI.2023.3273291 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3273291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10119176</ieee_id><sourcerecordid>2810920138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobk7_gIgUvPGmM8lJ2-RSqtPJRMF5XdLkVDu6diYt4r-3-1DEq_NePO8L5yHklNExY1RdzZ-vH6djTjmMgSfAFdsjQ6ZAhRCB2idDymIeSsnlgBx5v6CUiYjCIRlA0icl2JA8zFC7WucVBjelb12Zd23Z1EGqqzJ3epOLxgUT_Axf3ps2SCvtfTitjcMl1q2ugs1CWb8dk4NCVx5PdndEXie38_Q-nD3dTdPrWWgg4m1ooUi0sLEslJAoWGwTHSdGm0RIk9sCbASIygDkUUK5sFoaaWMhuNAWLYURudzurlzz0aFvs2XpDVaVrrHpfMZlL4dTBrJHL_6hi6br363WVNw7AEGjnuJbyrjGe4dFtnLlUruvjNFsbTrbmM7WprOd6b50vpvu8iXa38qP2h442wIlIv5ZZEyxJIZvOuOB8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861453405</pqid></control><display><type>article</type><title>Learnable Distribution Calibration for Few-Shot Class-Incremental Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Binghao ; Yang, Boyu ; Xie, Lingxi ; Wang, Ren ; Tian, Qi ; Ye, Qixiang</creator><creatorcontrib>Liu, Binghao ; Yang, Boyu ; Xie, Lingxi ; Wang, Ren ; Tian, Qi ; Ye, Qixiang</creatorcontrib><description>Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid 'forgetting', as well as estimating distributions and augmenting samples for new classes to alleviate 'over-fitting' caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL's flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC respectively outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%. LDC's effectiveness is also validated on few-shot learning scenarios.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3273291</identifier><identifier>PMID: 37145941</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Calibration ; Covariance matrices ; Covariance matrix ; Feature extraction ; Few-shot learning ; incremental learning ; learnable distribution calibration ; Learning ; Mathematical analysis ; parameterized calibration unit ; Power capacitors ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-10, Vol.45 (10), p.12699-12706</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03</citedby><cites>FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03</cites><orcidid>0000-0003-1215-6259 ; 0000-0001-7610-5392 ; 0000-0003-3799-6625 ; 0000-0003-4831-9451 ; 0000-0002-7252-5047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10119176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37145941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Binghao</creatorcontrib><creatorcontrib>Yang, Boyu</creatorcontrib><creatorcontrib>Xie, Lingxi</creatorcontrib><creatorcontrib>Wang, Ren</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><title>Learnable Distribution Calibration for Few-Shot Class-Incremental Learning</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid 'forgetting', as well as estimating distributions and augmenting samples for new classes to alleviate 'over-fitting' caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL's flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC respectively outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%. LDC's effectiveness is also validated on few-shot learning scenarios.</description><subject>Adaptation models</subject><subject>Calibration</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Feature extraction</subject><subject>Few-shot learning</subject><subject>incremental learning</subject><subject>learnable distribution calibration</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>parameterized calibration unit</subject><subject>Power capacitors</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMobk7_gIgUvPGmM8lJ2-RSqtPJRMF5XdLkVDu6diYt4r-3-1DEq_NePO8L5yHklNExY1RdzZ-vH6djTjmMgSfAFdsjQ6ZAhRCB2idDymIeSsnlgBx5v6CUiYjCIRlA0icl2JA8zFC7WucVBjelb12Zd23Z1EGqqzJ3epOLxgUT_Axf3ps2SCvtfTitjcMl1q2ugs1CWb8dk4NCVx5PdndEXie38_Q-nD3dTdPrWWgg4m1ooUi0sLEslJAoWGwTHSdGm0RIk9sCbASIygDkUUK5sFoaaWMhuNAWLYURudzurlzz0aFvs2XpDVaVrrHpfMZlL4dTBrJHL_6hi6br363WVNw7AEGjnuJbyrjGe4dFtnLlUruvjNFsbTrbmM7WprOd6b50vpvu8iXa38qP2h442wIlIv5ZZEyxJIZvOuOB8w</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liu, Binghao</creator><creator>Yang, Boyu</creator><creator>Xie, Lingxi</creator><creator>Wang, Ren</creator><creator>Tian, Qi</creator><creator>Ye, Qixiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1215-6259</orcidid><orcidid>https://orcid.org/0000-0001-7610-5392</orcidid><orcidid>https://orcid.org/0000-0003-3799-6625</orcidid><orcidid>https://orcid.org/0000-0003-4831-9451</orcidid><orcidid>https://orcid.org/0000-0002-7252-5047</orcidid></search><sort><creationdate>20231001</creationdate><title>Learnable Distribution Calibration for Few-Shot Class-Incremental Learning</title><author>Liu, Binghao ; Yang, Boyu ; Xie, Lingxi ; Wang, Ren ; Tian, Qi ; Ye, Qixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Calibration</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Feature extraction</topic><topic>Few-shot learning</topic><topic>incremental learning</topic><topic>learnable distribution calibration</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>parameterized calibration unit</topic><topic>Power capacitors</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Binghao</creatorcontrib><creatorcontrib>Yang, Boyu</creatorcontrib><creatorcontrib>Xie, Lingxi</creatorcontrib><creatorcontrib>Wang, Ren</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Binghao</au><au>Yang, Boyu</au><au>Xie, Lingxi</au><au>Wang, Ren</au><au>Tian, Qi</au><au>Ye, Qixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learnable Distribution Calibration for Few-Shot Class-Incremental Learning</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>45</volume><issue>10</issue><spage>12699</spage><epage>12706</epage><pages>12699-12706</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid 'forgetting', as well as estimating distributions and augmenting samples for new classes to alleviate 'over-fitting' caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL's flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC respectively outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%. LDC's effectiveness is also validated on few-shot learning scenarios.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37145941</pmid><doi>10.1109/TPAMI.2023.3273291</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1215-6259</orcidid><orcidid>https://orcid.org/0000-0001-7610-5392</orcidid><orcidid>https://orcid.org/0000-0003-3799-6625</orcidid><orcidid>https://orcid.org/0000-0003-4831-9451</orcidid><orcidid>https://orcid.org/0000-0002-7252-5047</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-10, Vol.45 (10), p.12699-12706 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2023_3273291 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models Calibration Covariance matrices Covariance matrix Feature extraction Few-shot learning incremental learning learnable distribution calibration Learning Mathematical analysis parameterized calibration unit Power capacitors Task analysis Training |
title | Learnable Distribution Calibration for Few-Shot Class-Incremental Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learnable%20Distribution%20Calibration%20for%20Few-Shot%20Class-Incremental%20Learning&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Binghao&rft.date=2023-10-01&rft.volume=45&rft.issue=10&rft.spage=12699&rft.epage=12706&rft.pages=12699-12706&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3273291&rft_dat=%3Cproquest_cross%3E2810920138%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-d3f7a4d68f948e416d7a67cac748cbdf3d53ee9c33b57024da8c8d64424aded03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861453405&rft_id=info:pmid/37145941&rft_ieee_id=10119176&rfr_iscdi=true |