Loading…
NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering
Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2024-04, Vol.46 (4), p.2364-2377 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43 |
container_end_page | 2377 |
container_issue | 4 |
container_start_page | 2364 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 46 |
creator | Liu, Yu-Tao Wang, Li Yang, Jie Chen, Weikai Meng, Xiaoxu Yang, Bo Gao, Lin |
description | Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries. |
doi_str_mv | 10.1109/TPAMI.2023.3335353 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3335353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330070</ieee_id><sourcerecordid>2895261833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYMobk7_gIgUfPGl8yZp0tS3oU6FOUU2fQxdcjsrXTuT9cF_b-amiIRwc-Gcc3M_Qo4p9CmF7GLyNHi47zNgvM85F-HskC7NeBaHZ7ZLukAli5ViqkMOvH8HoIkAvk86XAEVKYguuRnj9Hp4GY0wd3VZz6Mxti6vomnty3mNNrou_SqvDUbDEivro9dy9Ra9NFW7wOgZa4suuA7JXpFXHo-2tUemw5vJ1V08ery9vxqMYsOBr2JZCG4Lk8lwZyIVhcysUkImoUies9DyAgVlYNMUE5ASjEmsNSjMLMGE98j5Jnfpmo8W_UovSm-wqvIam9ZrpjLBJFUBR4-c_ZO-N62rw-80y8L-oNIUgoptVMY13jss9NKVi9x9agp6DVl_Q9ZryHoLOZhOt9HtbIH21_JDNQhONoISEf8kcg4Qhn4BYKJ-mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938008770</pqid></control><display><type>article</type><title>NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering</title><source>IEEE Xplore (Online service)</source><creator>Liu, Yu-Tao ; Wang, Li ; Yang, Jie ; Chen, Weikai ; Meng, Xiaoxu ; Yang, Bo ; Gao, Lin</creator><creatorcontrib>Liu, Yu-Tao ; Wang, Li ; Yang, Jie ; Chen, Weikai ; Meng, Xiaoxu ; Yang, Bo ; Gao, Lin</creatorcontrib><description>Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3335353</identifier><identifier>PMID: 38015705</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Datasets ; Image color analysis ; Image reconstruction ; Occlusion ; open surfaces ; Reconstruction ; Regularization ; Rendering ; Rendering (computer graphics) ; Shape ; shape reconstruction from multi-view images ; Surface reconstruction ; Surface texture ; Topology ; Unsigned distance fields ; volume rendering ; Weighting functions</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.46 (4), p.2364-2377</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43</cites><orcidid>0000-0002-6503-8312 ; 0000-0002-1021-8148 ; 0009-0009-0814-7123 ; 0000-0002-3212-1072 ; 0009-0009-8562-4026 ; 0000-0003-2979-7765 ; 0009-0008-1065-4979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38015705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yu-Tao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Chen, Weikai</creatorcontrib><creatorcontrib>Meng, Xiaoxu</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><title>NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.</description><subject>Datasets</subject><subject>Image color analysis</subject><subject>Image reconstruction</subject><subject>Occlusion</subject><subject>open surfaces</subject><subject>Reconstruction</subject><subject>Regularization</subject><subject>Rendering</subject><subject>Rendering (computer graphics)</subject><subject>Shape</subject><subject>shape reconstruction from multi-view images</subject><subject>Surface reconstruction</subject><subject>Surface texture</subject><subject>Topology</subject><subject>Unsigned distance fields</subject><subject>volume rendering</subject><subject>Weighting functions</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAUhYMobk7_gIgUfPGl8yZp0tS3oU6FOUU2fQxdcjsrXTuT9cF_b-amiIRwc-Gcc3M_Qo4p9CmF7GLyNHi47zNgvM85F-HskC7NeBaHZ7ZLukAli5ViqkMOvH8HoIkAvk86XAEVKYguuRnj9Hp4GY0wd3VZz6Mxti6vomnty3mNNrou_SqvDUbDEivro9dy9Ra9NFW7wOgZa4suuA7JXpFXHo-2tUemw5vJ1V08ery9vxqMYsOBr2JZCG4Lk8lwZyIVhcysUkImoUies9DyAgVlYNMUE5ASjEmsNSjMLMGE98j5Jnfpmo8W_UovSm-wqvIam9ZrpjLBJFUBR4-c_ZO-N62rw-80y8L-oNIUgoptVMY13jss9NKVi9x9agp6DVl_Q9ZryHoLOZhOt9HtbIH21_JDNQhONoISEf8kcg4Qhn4BYKJ-mg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Yu-Tao</creator><creator>Wang, Li</creator><creator>Yang, Jie</creator><creator>Chen, Weikai</creator><creator>Meng, Xiaoxu</creator><creator>Yang, Bo</creator><creator>Gao, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6503-8312</orcidid><orcidid>https://orcid.org/0000-0002-1021-8148</orcidid><orcidid>https://orcid.org/0009-0009-0814-7123</orcidid><orcidid>https://orcid.org/0000-0002-3212-1072</orcidid><orcidid>https://orcid.org/0009-0009-8562-4026</orcidid><orcidid>https://orcid.org/0000-0003-2979-7765</orcidid><orcidid>https://orcid.org/0009-0008-1065-4979</orcidid></search><sort><creationdate>20240401</creationdate><title>NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering</title><author>Liu, Yu-Tao ; Wang, Li ; Yang, Jie ; Chen, Weikai ; Meng, Xiaoxu ; Yang, Bo ; Gao, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Image color analysis</topic><topic>Image reconstruction</topic><topic>Occlusion</topic><topic>open surfaces</topic><topic>Reconstruction</topic><topic>Regularization</topic><topic>Rendering</topic><topic>Rendering (computer graphics)</topic><topic>Shape</topic><topic>shape reconstruction from multi-view images</topic><topic>Surface reconstruction</topic><topic>Surface texture</topic><topic>Topology</topic><topic>Unsigned distance fields</topic><topic>volume rendering</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu-Tao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Chen, Weikai</creatorcontrib><creatorcontrib>Meng, Xiaoxu</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yu-Tao</au><au>Wang, Li</au><au>Yang, Jie</au><au>Chen, Weikai</au><au>Meng, Xiaoxu</au><au>Yang, Bo</au><au>Gao, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>46</volume><issue>4</issue><spage>2364</spage><epage>2377</epage><pages>2364-2377</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38015705</pmid><doi>10.1109/TPAMI.2023.3335353</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6503-8312</orcidid><orcidid>https://orcid.org/0000-0002-1021-8148</orcidid><orcidid>https://orcid.org/0009-0009-0814-7123</orcidid><orcidid>https://orcid.org/0000-0002-3212-1072</orcidid><orcidid>https://orcid.org/0009-0009-8562-4026</orcidid><orcidid>https://orcid.org/0000-0003-2979-7765</orcidid><orcidid>https://orcid.org/0009-0008-1065-4979</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.46 (4), p.2364-2377 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2023_3335353 |
source | IEEE Xplore (Online service) |
subjects | Datasets Image color analysis Image reconstruction Occlusion open surfaces Reconstruction Regularization Rendering Rendering (computer graphics) Shape shape reconstruction from multi-view images Surface reconstruction Surface texture Topology Unsigned distance fields volume rendering Weighting functions |
title | NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NeUDF:%20Learning%20Neural%20Unsigned%20Distance%20Fields%20With%20Volume%20Rendering&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Yu-Tao&rft.date=2024-04-01&rft.volume=46&rft.issue=4&rft.spage=2364&rft.epage=2377&rft.pages=2364-2377&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3335353&rft_dat=%3Cproquest_cross%3E2895261833%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2938008770&rft_id=info:pmid/38015705&rft_ieee_id=10330070&rfr_iscdi=true |