Loading…

NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering

Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2024-04, Vol.46 (4), p.2364-2377
Main Authors: Liu, Yu-Tao, Wang, Li, Yang, Jie, Chen, Weikai, Meng, Xiaoxu, Yang, Bo, Gao, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43
container_end_page 2377
container_issue 4
container_start_page 2364
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 46
creator Liu, Yu-Tao
Wang, Li
Yang, Jie
Chen, Weikai
Meng, Xiaoxu
Yang, Bo
Gao, Lin
description Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.
doi_str_mv 10.1109/TPAMI.2023.3335353
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3335353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330070</ieee_id><sourcerecordid>2895261833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYMobk7_gIgUfPGl8yZp0tS3oU6FOUU2fQxdcjsrXTuT9cF_b-amiIRwc-Gcc3M_Qo4p9CmF7GLyNHi47zNgvM85F-HskC7NeBaHZ7ZLukAli5ViqkMOvH8HoIkAvk86XAEVKYguuRnj9Hp4GY0wd3VZz6Mxti6vomnty3mNNrou_SqvDUbDEivro9dy9Ra9NFW7wOgZa4suuA7JXpFXHo-2tUemw5vJ1V08ery9vxqMYsOBr2JZCG4Lk8lwZyIVhcysUkImoUies9DyAgVlYNMUE5ASjEmsNSjMLMGE98j5Jnfpmo8W_UovSm-wqvIam9ZrpjLBJFUBR4-c_ZO-N62rw-80y8L-oNIUgoptVMY13jss9NKVi9x9agp6DVl_Q9ZryHoLOZhOt9HtbIH21_JDNQhONoISEf8kcg4Qhn4BYKJ-mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938008770</pqid></control><display><type>article</type><title>NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering</title><source>IEEE Xplore (Online service)</source><creator>Liu, Yu-Tao ; Wang, Li ; Yang, Jie ; Chen, Weikai ; Meng, Xiaoxu ; Yang, Bo ; Gao, Lin</creator><creatorcontrib>Liu, Yu-Tao ; Wang, Li ; Yang, Jie ; Chen, Weikai ; Meng, Xiaoxu ; Yang, Bo ; Gao, Lin</creatorcontrib><description>Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3335353</identifier><identifier>PMID: 38015705</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Datasets ; Image color analysis ; Image reconstruction ; Occlusion ; open surfaces ; Reconstruction ; Regularization ; Rendering ; Rendering (computer graphics) ; Shape ; shape reconstruction from multi-view images ; Surface reconstruction ; Surface texture ; Topology ; Unsigned distance fields ; volume rendering ; Weighting functions</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.46 (4), p.2364-2377</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43</cites><orcidid>0000-0002-6503-8312 ; 0000-0002-1021-8148 ; 0009-0009-0814-7123 ; 0000-0002-3212-1072 ; 0009-0009-8562-4026 ; 0000-0003-2979-7765 ; 0009-0008-1065-4979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38015705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yu-Tao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Chen, Weikai</creatorcontrib><creatorcontrib>Meng, Xiaoxu</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><title>NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.</description><subject>Datasets</subject><subject>Image color analysis</subject><subject>Image reconstruction</subject><subject>Occlusion</subject><subject>open surfaces</subject><subject>Reconstruction</subject><subject>Regularization</subject><subject>Rendering</subject><subject>Rendering (computer graphics)</subject><subject>Shape</subject><subject>shape reconstruction from multi-view images</subject><subject>Surface reconstruction</subject><subject>Surface texture</subject><subject>Topology</subject><subject>Unsigned distance fields</subject><subject>volume rendering</subject><subject>Weighting functions</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAUhYMobk7_gIgUfPGl8yZp0tS3oU6FOUU2fQxdcjsrXTuT9cF_b-amiIRwc-Gcc3M_Qo4p9CmF7GLyNHi47zNgvM85F-HskC7NeBaHZ7ZLukAli5ViqkMOvH8HoIkAvk86XAEVKYguuRnj9Hp4GY0wd3VZz6Mxti6vomnty3mNNrou_SqvDUbDEivro9dy9Ra9NFW7wOgZa4suuA7JXpFXHo-2tUemw5vJ1V08ery9vxqMYsOBr2JZCG4Lk8lwZyIVhcysUkImoUies9DyAgVlYNMUE5ASjEmsNSjMLMGE98j5Jnfpmo8W_UovSm-wqvIam9ZrpjLBJFUBR4-c_ZO-N62rw-80y8L-oNIUgoptVMY13jss9NKVi9x9agp6DVl_Q9ZryHoLOZhOt9HtbIH21_JDNQhONoISEf8kcg4Qhn4BYKJ-mg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Yu-Tao</creator><creator>Wang, Li</creator><creator>Yang, Jie</creator><creator>Chen, Weikai</creator><creator>Meng, Xiaoxu</creator><creator>Yang, Bo</creator><creator>Gao, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6503-8312</orcidid><orcidid>https://orcid.org/0000-0002-1021-8148</orcidid><orcidid>https://orcid.org/0009-0009-0814-7123</orcidid><orcidid>https://orcid.org/0000-0002-3212-1072</orcidid><orcidid>https://orcid.org/0009-0009-8562-4026</orcidid><orcidid>https://orcid.org/0000-0003-2979-7765</orcidid><orcidid>https://orcid.org/0009-0008-1065-4979</orcidid></search><sort><creationdate>20240401</creationdate><title>NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering</title><author>Liu, Yu-Tao ; Wang, Li ; Yang, Jie ; Chen, Weikai ; Meng, Xiaoxu ; Yang, Bo ; Gao, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Image color analysis</topic><topic>Image reconstruction</topic><topic>Occlusion</topic><topic>open surfaces</topic><topic>Reconstruction</topic><topic>Regularization</topic><topic>Rendering</topic><topic>Rendering (computer graphics)</topic><topic>Shape</topic><topic>shape reconstruction from multi-view images</topic><topic>Surface reconstruction</topic><topic>Surface texture</topic><topic>Topology</topic><topic>Unsigned distance fields</topic><topic>volume rendering</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu-Tao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Chen, Weikai</creatorcontrib><creatorcontrib>Meng, Xiaoxu</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yu-Tao</au><au>Wang, Li</au><au>Yang, Jie</au><au>Chen, Weikai</au><au>Meng, Xiaoxu</au><au>Yang, Bo</au><au>Gao, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>46</volume><issue>4</issue><spage>2364</spage><epage>2377</epage><pages>2364-2377</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38015705</pmid><doi>10.1109/TPAMI.2023.3335353</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6503-8312</orcidid><orcidid>https://orcid.org/0000-0002-1021-8148</orcidid><orcidid>https://orcid.org/0009-0009-0814-7123</orcidid><orcidid>https://orcid.org/0000-0002-3212-1072</orcidid><orcidid>https://orcid.org/0009-0009-8562-4026</orcidid><orcidid>https://orcid.org/0000-0003-2979-7765</orcidid><orcidid>https://orcid.org/0009-0008-1065-4979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.46 (4), p.2364-2377
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2023_3335353
source IEEE Xplore (Online service)
subjects Datasets
Image color analysis
Image reconstruction
Occlusion
open surfaces
Reconstruction
Regularization
Rendering
Rendering (computer graphics)
Shape
shape reconstruction from multi-view images
Surface reconstruction
Surface texture
Topology
Unsigned distance fields
volume rendering
Weighting functions
title NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NeUDF:%20Learning%20Neural%20Unsigned%20Distance%20Fields%20With%20Volume%20Rendering&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Yu-Tao&rft.date=2024-04-01&rft.volume=46&rft.issue=4&rft.spage=2364&rft.epage=2377&rft.pages=2364-2377&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3335353&rft_dat=%3Cproquest_cross%3E2895261833%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-6f53dfc96fc9b575f69d885649d863a269d3fe5120d77e40660cc4ddce5cb4e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2938008770&rft_id=info:pmid/38015705&rft_ieee_id=10330070&rfr_iscdi=true