Loading…

Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University

In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduce...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on parallel and distributed systems 2022-09, Vol.33 (9), p.2058-2061
Main Authors: Li, Shenggui, Lee, Bu-Sung
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2061
container_issue 9
container_start_page 2058
container_title IEEE transactions on parallel and distributed systems
container_volume 33
creator Li, Shenggui
Lee, Bu-Sung
description In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduced the single CPU/GPU performance as well as strong scaling experiments. We set up our configurations on Microsoft Azure CycleCloud and have two clusters. One cluster has 4 nodes with 60 CPUs on each node and the other cluster has 4 nodes with 4 NVIDIA V100 GPUs on each node. Both clusters come with InfiniBand. The original author conducted his experiments on Theta and Blue Waters supercomputers. We were able to reproduce part of the results in the original paper, however, failed to produce similar performance on other experiments. This report was submitted as part of the reproducibility challenge in SC20 Student Cluster Competition. Digital artifacts from these experiments are available at: 10.5281/zenodo.5598108.
doi_str_mv 10.1109/TPDS.2021.3128040
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPDS_2021_3128040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9615005</ieee_id><sourcerecordid>2623469977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-eb9f5f79bc3a95e2bd34a76026d36f0197009b8eb561b0e1ef5c5a637b2436bf3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEs8PQGwsWKeM7dip2aHwlHgJUtFdZJtJa5TGYKdI4Rf4aVIVsbqjmXtnNCdJDimMKAV1Wj5dvIwYMDrilI0hg41khwoxThkd882hhkykilG1nezG-A5AMwHZTvJTBNe5zyUSX5Pje1xMi_KMDOpDnxbYdsFZMk2fdU-Kkjyj9W3swtJ2zrfk1XVzcq9jdF9InnTQTYON-9ar4TExPXkpClKiXpCr4BfkQbe9bmdDx85b3_iZs7ohk3ZIh-i6fj_ZqnUT8eBP95LJ1WVZ3KR3j9e3xfldalkmuhSNqkWdK2O5VgKZeeOZziUw-cZlDVTlAMqM0QhJDSDFWlihJc8Ny7g0Nd9LTtZ7P4IfPo9d9e6XoR1OVkwynkml8nxw0bXLBh9jwLr6CG6hQ19RqFbMqxXzasW8-mM-ZI7WGYeI_34lqQAQ_BemdX3p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469977</pqid></control><display><type>article</type><title>Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University</title><source>IEEE Xplore (Online service)</source><creator>Li, Shenggui ; Lee, Bu-Sung</creator><creatorcontrib>Li, Shenggui ; Lee, Bu-Sung</creatorcontrib><description>In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduced the single CPU/GPU performance as well as strong scaling experiments. We set up our configurations on Microsoft Azure CycleCloud and have two clusters. One cluster has 4 nodes with 60 CPUs on each node and the other cluster has 4 nodes with 4 NVIDIA V100 GPUs on each node. Both clusters come with InfiniBand. The original author conducted his experiments on Theta and Blue Waters supercomputers. We were able to reproduce part of the results in the original paper, however, failed to produce similar performance on other experiments. This report was submitted as part of the reproducibility challenge in SC20 Student Cluster Competition. Digital artifacts from these experiments are available at: 10.5281/zenodo.5598108.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2021.3128040</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Central processing units ; Clusters ; Computed tomography ; Computer memory ; CPUs ; Experiments ; Graphics processing units ; Image reconstruction ; memory ; Nodes ; Performance evaluation ; Reconstruction ; reproducible computation ; SC20 ; Scalability ; Sockets ; Supercomputers ; X-ray CT</subject><ispartof>IEEE transactions on parallel and distributed systems, 2022-09, Vol.33 (9), p.2058-2061</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7828-7900 ; 0000-0003-2037-2496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9615005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Li, Shenggui</creatorcontrib><creatorcontrib>Lee, Bu-Sung</creatorcontrib><title>Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduced the single CPU/GPU performance as well as strong scaling experiments. We set up our configurations on Microsoft Azure CycleCloud and have two clusters. One cluster has 4 nodes with 60 CPUs on each node and the other cluster has 4 nodes with 4 NVIDIA V100 GPUs on each node. Both clusters come with InfiniBand. The original author conducted his experiments on Theta and Blue Waters supercomputers. We were able to reproduce part of the results in the original paper, however, failed to produce similar performance on other experiments. This report was submitted as part of the reproducibility challenge in SC20 Student Cluster Competition. Digital artifacts from these experiments are available at: 10.5281/zenodo.5598108.</description><subject>Bandwidth</subject><subject>Central processing units</subject><subject>Clusters</subject><subject>Computed tomography</subject><subject>Computer memory</subject><subject>CPUs</subject><subject>Experiments</subject><subject>Graphics processing units</subject><subject>Image reconstruction</subject><subject>memory</subject><subject>Nodes</subject><subject>Performance evaluation</subject><subject>Reconstruction</subject><subject>reproducible computation</subject><subject>SC20</subject><subject>Scalability</subject><subject>Sockets</subject><subject>Supercomputers</subject><subject>X-ray CT</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEEs8PQGwsWKeM7dip2aHwlHgJUtFdZJtJa5TGYKdI4Rf4aVIVsbqjmXtnNCdJDimMKAV1Wj5dvIwYMDrilI0hg41khwoxThkd882hhkykilG1nezG-A5AMwHZTvJTBNe5zyUSX5Pje1xMi_KMDOpDnxbYdsFZMk2fdU-Kkjyj9W3swtJ2zrfk1XVzcq9jdF9InnTQTYON-9ar4TExPXkpClKiXpCr4BfkQbe9bmdDx85b3_iZs7ohk3ZIh-i6fj_ZqnUT8eBP95LJ1WVZ3KR3j9e3xfldalkmuhSNqkWdK2O5VgKZeeOZziUw-cZlDVTlAMqM0QhJDSDFWlihJc8Ny7g0Nd9LTtZ7P4IfPo9d9e6XoR1OVkwynkml8nxw0bXLBh9jwLr6CG6hQ19RqFbMqxXzasW8-mM-ZI7WGYeI_34lqQAQ_BemdX3p</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Li, Shenggui</creator><creator>Lee, Bu-Sung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7828-7900</orcidid><orcidid>https://orcid.org/0000-0003-2037-2496</orcidid></search><sort><creationdate>20220901</creationdate><title>Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University</title><author>Li, Shenggui ; Lee, Bu-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-eb9f5f79bc3a95e2bd34a76026d36f0197009b8eb561b0e1ef5c5a637b2436bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bandwidth</topic><topic>Central processing units</topic><topic>Clusters</topic><topic>Computed tomography</topic><topic>Computer memory</topic><topic>CPUs</topic><topic>Experiments</topic><topic>Graphics processing units</topic><topic>Image reconstruction</topic><topic>memory</topic><topic>Nodes</topic><topic>Performance evaluation</topic><topic>Reconstruction</topic><topic>reproducible computation</topic><topic>SC20</topic><topic>Scalability</topic><topic>Sockets</topic><topic>Supercomputers</topic><topic>X-ray CT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shenggui</creatorcontrib><creatorcontrib>Lee, Bu-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shenggui</au><au>Lee, Bu-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>33</volume><issue>9</issue><spage>2058</spage><epage>2061</epage><pages>2058-2061</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduced the single CPU/GPU performance as well as strong scaling experiments. We set up our configurations on Microsoft Azure CycleCloud and have two clusters. One cluster has 4 nodes with 60 CPUs on each node and the other cluster has 4 nodes with 4 NVIDIA V100 GPUs on each node. Both clusters come with InfiniBand. The original author conducted his experiments on Theta and Blue Waters supercomputers. We were able to reproduce part of the results in the original paper, however, failed to produce similar performance on other experiments. This report was submitted as part of the reproducibility challenge in SC20 Student Cluster Competition. Digital artifacts from these experiments are available at: 10.5281/zenodo.5598108.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2021.3128040</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7828-7900</orcidid><orcidid>https://orcid.org/0000-0003-2037-2496</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2022-09, Vol.33 (9), p.2058-2061
issn 1045-9219
1558-2183
language eng
recordid cdi_crossref_primary_10_1109_TPDS_2021_3128040
source IEEE Xplore (Online service)
subjects Bandwidth
Central processing units
Clusters
Computed tomography
Computer memory
CPUs
Experiments
Graphics processing units
Image reconstruction
memory
Nodes
Performance evaluation
Reconstruction
reproducible computation
SC20
Scalability
Sockets
Supercomputers
X-ray CT
title Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critique%20of%20%22MemXCT:%20Memory-Centric%20X-Ray%20CT%20Reconstruction%20With%20Massive%20Parallelization%22%20by%20SCC%20Team%20From%20Nanyang%20Technological%20University&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Li,%20Shenggui&rft.date=2022-09-01&rft.volume=33&rft.issue=9&rft.spage=2058&rft.epage=2061&rft.pages=2058-2061&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2021.3128040&rft_dat=%3Cproquest_cross%3E2623469977%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-eb9f5f79bc3a95e2bd34a76026d36f0197009b8eb561b0e1ef5c5a637b2436bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623469977&rft_id=info:pmid/&rft_ieee_id=9615005&rfr_iscdi=true