Loading…
Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University
In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduce...
Saved in:
Published in: | IEEE transactions on parallel and distributed systems 2022-09, Vol.33 (9), p.2058-2061 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2061 |
container_issue | 9 |
container_start_page | 2058 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 33 |
creator | Li, Shenggui Lee, Bu-Sung |
description | In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduced the single CPU/GPU performance as well as strong scaling experiments. We set up our configurations on Microsoft Azure CycleCloud and have two clusters. One cluster has 4 nodes with 60 CPUs on each node and the other cluster has 4 nodes with 4 NVIDIA V100 GPUs on each node. Both clusters come with InfiniBand. The original author conducted his experiments on Theta and Blue Waters supercomputers. We were able to reproduce part of the results in the original paper, however, failed to produce similar performance on other experiments. This report was submitted as part of the reproducibility challenge in SC20 Student Cluster Competition. Digital artifacts from these experiments are available at: 10.5281/zenodo.5598108. |
doi_str_mv | 10.1109/TPDS.2021.3128040 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPDS_2021_3128040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9615005</ieee_id><sourcerecordid>2623469977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-eb9f5f79bc3a95e2bd34a76026d36f0197009b8eb561b0e1ef5c5a637b2436bf3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEs8PQGwsWKeM7dip2aHwlHgJUtFdZJtJa5TGYKdI4Rf4aVIVsbqjmXtnNCdJDimMKAV1Wj5dvIwYMDrilI0hg41khwoxThkd882hhkykilG1nezG-A5AMwHZTvJTBNe5zyUSX5Pje1xMi_KMDOpDnxbYdsFZMk2fdU-Kkjyj9W3swtJ2zrfk1XVzcq9jdF9InnTQTYON-9ar4TExPXkpClKiXpCr4BfkQbe9bmdDx85b3_iZs7ohk3ZIh-i6fj_ZqnUT8eBP95LJ1WVZ3KR3j9e3xfldalkmuhSNqkWdK2O5VgKZeeOZziUw-cZlDVTlAMqM0QhJDSDFWlihJc8Ny7g0Nd9LTtZ7P4IfPo9d9e6XoR1OVkwynkml8nxw0bXLBh9jwLr6CG6hQ19RqFbMqxXzasW8-mM-ZI7WGYeI_34lqQAQ_BemdX3p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469977</pqid></control><display><type>article</type><title>Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University</title><source>IEEE Xplore (Online service)</source><creator>Li, Shenggui ; Lee, Bu-Sung</creator><creatorcontrib>Li, Shenggui ; Lee, Bu-Sung</creatorcontrib><description>In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduced the single CPU/GPU performance as well as strong scaling experiments. We set up our configurations on Microsoft Azure CycleCloud and have two clusters. One cluster has 4 nodes with 60 CPUs on each node and the other cluster has 4 nodes with 4 NVIDIA V100 GPUs on each node. Both clusters come with InfiniBand. The original author conducted his experiments on Theta and Blue Waters supercomputers. We were able to reproduce part of the results in the original paper, however, failed to produce similar performance on other experiments. This report was submitted as part of the reproducibility challenge in SC20 Student Cluster Competition. Digital artifacts from these experiments are available at: 10.5281/zenodo.5598108.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2021.3128040</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Central processing units ; Clusters ; Computed tomography ; Computer memory ; CPUs ; Experiments ; Graphics processing units ; Image reconstruction ; memory ; Nodes ; Performance evaluation ; Reconstruction ; reproducible computation ; SC20 ; Scalability ; Sockets ; Supercomputers ; X-ray CT</subject><ispartof>IEEE transactions on parallel and distributed systems, 2022-09, Vol.33 (9), p.2058-2061</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7828-7900 ; 0000-0003-2037-2496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9615005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Li, Shenggui</creatorcontrib><creatorcontrib>Lee, Bu-Sung</creatorcontrib><title>Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduced the single CPU/GPU performance as well as strong scaling experiments. We set up our configurations on Microsoft Azure CycleCloud and have two clusters. One cluster has 4 nodes with 60 CPUs on each node and the other cluster has 4 nodes with 4 NVIDIA V100 GPUs on each node. Both clusters come with InfiniBand. The original author conducted his experiments on Theta and Blue Waters supercomputers. We were able to reproduce part of the results in the original paper, however, failed to produce similar performance on other experiments. This report was submitted as part of the reproducibility challenge in SC20 Student Cluster Competition. Digital artifacts from these experiments are available at: 10.5281/zenodo.5598108.</description><subject>Bandwidth</subject><subject>Central processing units</subject><subject>Clusters</subject><subject>Computed tomography</subject><subject>Computer memory</subject><subject>CPUs</subject><subject>Experiments</subject><subject>Graphics processing units</subject><subject>Image reconstruction</subject><subject>memory</subject><subject>Nodes</subject><subject>Performance evaluation</subject><subject>Reconstruction</subject><subject>reproducible computation</subject><subject>SC20</subject><subject>Scalability</subject><subject>Sockets</subject><subject>Supercomputers</subject><subject>X-ray CT</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEEs8PQGwsWKeM7dip2aHwlHgJUtFdZJtJa5TGYKdI4Rf4aVIVsbqjmXtnNCdJDimMKAV1Wj5dvIwYMDrilI0hg41khwoxThkd882hhkykilG1nezG-A5AMwHZTvJTBNe5zyUSX5Pje1xMi_KMDOpDnxbYdsFZMk2fdU-Kkjyj9W3swtJ2zrfk1XVzcq9jdF9InnTQTYON-9ar4TExPXkpClKiXpCr4BfkQbe9bmdDx85b3_iZs7ohk3ZIh-i6fj_ZqnUT8eBP95LJ1WVZ3KR3j9e3xfldalkmuhSNqkWdK2O5VgKZeeOZziUw-cZlDVTlAMqM0QhJDSDFWlihJc8Ny7g0Nd9LTtZ7P4IfPo9d9e6XoR1OVkwynkml8nxw0bXLBh9jwLr6CG6hQ19RqFbMqxXzasW8-mM-ZI7WGYeI_34lqQAQ_BemdX3p</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Li, Shenggui</creator><creator>Lee, Bu-Sung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7828-7900</orcidid><orcidid>https://orcid.org/0000-0003-2037-2496</orcidid></search><sort><creationdate>20220901</creationdate><title>Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University</title><author>Li, Shenggui ; Lee, Bu-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-eb9f5f79bc3a95e2bd34a76026d36f0197009b8eb561b0e1ef5c5a637b2436bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bandwidth</topic><topic>Central processing units</topic><topic>Clusters</topic><topic>Computed tomography</topic><topic>Computer memory</topic><topic>CPUs</topic><topic>Experiments</topic><topic>Graphics processing units</topic><topic>Image reconstruction</topic><topic>memory</topic><topic>Nodes</topic><topic>Performance evaluation</topic><topic>Reconstruction</topic><topic>reproducible computation</topic><topic>SC20</topic><topic>Scalability</topic><topic>Sockets</topic><topic>Supercomputers</topic><topic>X-ray CT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shenggui</creatorcontrib><creatorcontrib>Lee, Bu-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shenggui</au><au>Lee, Bu-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>33</volume><issue>9</issue><spage>2058</spage><epage>2061</epage><pages>2058-2061</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>In this technical report, we focus on reproducing the results reported in the paper "MemXCT: Memory-Centric X-ray CT Reconstruction with Massive Parallelization" [1]. MemXCT is a scalable approach to X-ray Computed Tomography reconstruction which removes redundant computation. We reproduced the single CPU/GPU performance as well as strong scaling experiments. We set up our configurations on Microsoft Azure CycleCloud and have two clusters. One cluster has 4 nodes with 60 CPUs on each node and the other cluster has 4 nodes with 4 NVIDIA V100 GPUs on each node. Both clusters come with InfiniBand. The original author conducted his experiments on Theta and Blue Waters supercomputers. We were able to reproduce part of the results in the original paper, however, failed to produce similar performance on other experiments. This report was submitted as part of the reproducibility challenge in SC20 Student Cluster Competition. Digital artifacts from these experiments are available at: 10.5281/zenodo.5598108.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2021.3128040</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7828-7900</orcidid><orcidid>https://orcid.org/0000-0003-2037-2496</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2022-09, Vol.33 (9), p.2058-2061 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPDS_2021_3128040 |
source | IEEE Xplore (Online service) |
subjects | Bandwidth Central processing units Clusters Computed tomography Computer memory CPUs Experiments Graphics processing units Image reconstruction memory Nodes Performance evaluation Reconstruction reproducible computation SC20 Scalability Sockets Supercomputers X-ray CT |
title | Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Nanyang Technological University |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critique%20of%20%22MemXCT:%20Memory-Centric%20X-Ray%20CT%20Reconstruction%20With%20Massive%20Parallelization%22%20by%20SCC%20Team%20From%20Nanyang%20Technological%20University&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Li,%20Shenggui&rft.date=2022-09-01&rft.volume=33&rft.issue=9&rft.spage=2058&rft.epage=2061&rft.pages=2058-2061&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2021.3128040&rft_dat=%3Cproquest_cross%3E2623469977%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-eb9f5f79bc3a95e2bd34a76026d36f0197009b8eb561b0e1ef5c5a637b2436bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623469977&rft_id=info:pmid/&rft_ieee_id=9615005&rfr_iscdi=true |