Loading…
Dissipativity-based adaptive and robust control of UPS in unbalanced operation
In this paper, we investigate the output voltage control for three phase uninterruptible power supply (UPS) using controllers based on ideas of dissipativity. To provide balanced sinusoidal output voltages even in the presence of nonlinear and unbalanced loads, we first derive a dissipativity-based...
Saved in:
Published in: | IEEE transactions on power electronics 2003-07, Vol.18 (4), p.1056-1062 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate the output voltage control for three phase uninterruptible power supply (UPS) using controllers based on ideas of dissipativity. To provide balanced sinusoidal output voltages even in the presence of nonlinear and unbalanced loads, we first derive a dissipativity-based controller using a conventional /spl alpha//spl beta/ (fixed frame) representation of system dynamics and a frequency-domain representation of system disturbances. Adaptive refinements have been added to the controller to cope with parametric uncertainties. Second, based on the structure of the first adaptive controller, we propose another controller that leads to a linear time-invariant (LTI) closed loop system which is directly connected to synchronous frame harmonic voltage control. This controller, denoted as robust, avoids the most computationally demanding parameter estimation during adaptation, and offers important advantages for implementation. For the proposed robust controller, a sufficient condition in terms of the design parameters is presented to guarantee stability of the desired equilibrium and robustness against certain parametric uncertainties. Finally, simulation and experimental results on a three-phase prototype show effectiveness and advantages of the proposed class of controllers. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2003.813768 |