Loading…
Converter Rating Analysis for Photovoltaic Differential Power Processing Systems
When photovoltaic (PV) cells are connected in series, they experience internal and external mismatch that reduces output power. Differential power processing (DPP) architectures achieve high system efficiency by processing a fraction of the total power while maintaining distributed local maximum pow...
Saved in:
Published in: | IEEE transactions on power electronics 2015-04, Vol.30 (4), p.1987-1997 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When photovoltaic (PV) cells are connected in series, they experience internal and external mismatch that reduces output power. Differential power processing (DPP) architectures achieve high system efficiency by processing a fraction of the total power while maintaining distributed local maximum power point operation. This paper details the computational methods and analysis used to determine the operation of PV-to-bus and PV-to-PV DPP architectures with rating-limited converters. Simulations for both DPP architectures are used to evaluate system performance over 25 years of operation. Based on data from field studies, a PV power coefficient of variation can be estimated as 0.086 after 25 years. An improvement figure of merit reflecting the ratio of energy produced to that delivered in a conventional system is introduced to evaluate comparative performance. Converter ratings of 15-17% for PV-to-bus and 23-33% for PV-to-PV architectures are identified as appropriate ratings for a 15-submodule system (five PV panels in series). Both DPP architectures with these ratings are shown to deliver up to 2.8% more power compared to a conventional series-string architecture based on the expected panel variation over 25 years of operation. DPP converters also outperform dc optimizers in terms of lifetime performance. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2014.2326045 |