Loading…

Position Offset-Based Parameter Estimation for Permanent Magnet Synchronous Machines Under Variable Speed Control

A position offset-based multiparameter estimation for permanent magnet synchronous machines (PMSMs) under variable speed control is proposed in this paper, which does not need the aid from nominal parameter values of the PMSM and could estimate the rotor permanent magnet (PM) flux linkage and windin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2015-06, Vol.30 (6), p.3438-3446
Main Authors: Kan Liu, Zhu, Z. Q.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A position offset-based multiparameter estimation for permanent magnet synchronous machines (PMSMs) under variable speed control is proposed in this paper, which does not need the aid from nominal parameter values of the PMSM and could estimate the rotor permanent magnet (PM) flux linkage and winding resistance separately. For the estimation of rotor PM flux linkage, two sets of PMSM data corresponding to two position offsets are measured while the dq -axis reference currents are set to constants so as to ensure that the estimated machine parameters will not vary during the data measurement. Afterwards, the winding resistance will be estimated from measured PMSM data without addition of position offsets, in which the estimation and compensation of distorted voltage due to inverter nonlinearity are also taken into account. The conventional quantum genetic algorithm is used for aiding the calculation of proposed estimation, which is finally tested on an interior PMSM and shows very good performance in the estimation of rotor PM flux linkage and winding resistance. Thus, it could be used for the condition monitoring of stator winding and rotor PMs of PMSMs.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2014.2337011