Loading…

Magnetic Integration Into a Silicon Carbide Power Module for Current Balancing

Threshold-voltage mismatch among paralleled dies leads to unbalanced turn- on peak currents and switching energies, thus degrading reliability. A passive method employing inversely coupled inductors of tens of nH and drive-source resistors reduces current unbalance. An integrated design of the coupl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2019-11, Vol.34 (11), p.11026-11035
Main Authors: Miao, Zichen, Mao, Yincan, Lu, Guo-Quan, Ngo, Khai D. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-c4b408680f8d263d27bcc031f4781c708055e7de74c1ee05a04a1f7e2a9640bc3
cites cdi_FETCH-LOGICAL-c293t-c4b408680f8d263d27bcc031f4781c708055e7de74c1ee05a04a1f7e2a9640bc3
container_end_page 11035
container_issue 11
container_start_page 11026
container_title IEEE transactions on power electronics
container_volume 34
creator Miao, Zichen
Mao, Yincan
Lu, Guo-Quan
Ngo, Khai D. T.
description Threshold-voltage mismatch among paralleled dies leads to unbalanced turn- on peak currents and switching energies, thus degrading reliability. A passive method employing inversely coupled inductors of tens of nH and drive-source resistors reduces current unbalance. An integrated design of the coupled inductors is required to facilitate their practical use in a power module. A layout to achieve inverse coupling, high coupling coefficient, and low voltage stress, magnetic materials suitable for operation at tens of MHz, and high current rating of tens of amperes with small magnetic core are challenging for its implementation. A module with integrated coupled inductors that achieve inverse coupling by utilizing the copper trace of the substrate and bond wires, size comparable to the silicon carbide die, coupling coefficient higher than 0.98, tens of nH operating at tens of MHz, and current rating of tens of amperes was designed, fabricated, and validated in this work. The coupled inductors with magnetic material of low-temperature cofired ceramics are compatible with existing packaging technology for module fabrication. Effectiveness on reducing transient-current mismatch at various input voltages, load currents, and gate resistances was verified by experiments. Compared with the baseline module resembling commercial modules, the module with integrated coupled inductors reduces current unbalance from 36% to 6.4% and turn- on energy difference from 28% to 2.6% while maintaining the same total switching energy and negligible change of voltage stress.
doi_str_mv 10.1109/TPEL.2019.2899393
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2019_2899393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8642348</ieee_id><sourcerecordid>2285327910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c4b408680f8d263d27bcc031f4781c708055e7de74c1ee05a04a1f7e2a9640bc3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d_Uh296ihaqHVgvW8bDaTsiVm6yZF_PcmtHiaGeZ5Z-Ah5JbCjFLQD5v1fDljQPWMKa255mdkQrWgKVCQ52QCSmXpuLkkV123A6AiAzohbyu7bbH3Llm0PW6j7X1oxz4kNvnwjXfDWNhY-gqTdfjBmKxCdWgwqUNMikOM2PbJk21s63y7vSYXtW06vDnVKfl8nm-K13T5_rIoHpepY5r3qROlAJUrqFXFcl4xWToHnNZCKuokKMgylBVK4SgiZBaEpbVEZnUuoHR8Su6Pd_cxfB-w680uHGI7vDSMqYwzqSkMFD1SLoaui1ibffRfNv4aCmbUZkZtZtRmTtqGzN0x4xHxn1e5YFwo_gdz92f5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285327910</pqid></control><display><type>article</type><title>Magnetic Integration Into a Silicon Carbide Power Module for Current Balancing</title><source>IEEE Xplore (Online service)</source><creator>Miao, Zichen ; Mao, Yincan ; Lu, Guo-Quan ; Ngo, Khai D. T.</creator><creatorcontrib>Miao, Zichen ; Mao, Yincan ; Lu, Guo-Quan ; Ngo, Khai D. T.</creatorcontrib><description>Threshold-voltage mismatch among paralleled dies leads to unbalanced turn- on peak currents and switching energies, thus degrading reliability. A passive method employing inversely coupled inductors of tens of nH and drive-source resistors reduces current unbalance. An integrated design of the coupled inductors is required to facilitate their practical use in a power module. A layout to achieve inverse coupling, high coupling coefficient, and low voltage stress, magnetic materials suitable for operation at tens of MHz, and high current rating of tens of amperes with small magnetic core are challenging for its implementation. A module with integrated coupled inductors that achieve inverse coupling by utilizing the copper trace of the substrate and bond wires, size comparable to the silicon carbide die, coupling coefficient higher than 0.98, tens of nH operating at tens of MHz, and current rating of tens of amperes was designed, fabricated, and validated in this work. The coupled inductors with magnetic material of low-temperature cofired ceramics are compatible with existing packaging technology for module fabrication. Effectiveness on reducing transient-current mismatch at various input voltages, load currents, and gate resistances was verified by experiments. Compared with the baseline module resembling commercial modules, the module with integrated coupled inductors reduces current unbalance from 36% to 6.4% and turn- on energy difference from 28% to 2.6% while maintaining the same total switching energy and negligible change of voltage stress.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2019.2899393</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Copper ; Coupling coefficients ; Couplings ; Current balancing ; high frequency ; Inductors ; inverse/negative coupling ; Low voltage ; Magnetic cores ; magnetic integration ; Magnetic materials ; Modules ; MOSFET ; paralleled silicon carbide (SiC) &lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfet s ; power module ; Resistors ; Silicon carbide ; Substrates ; Switching ; Unbalance ; Windings</subject><ispartof>IEEE transactions on power electronics, 2019-11, Vol.34 (11), p.11026-11035</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c4b408680f8d263d27bcc031f4781c708055e7de74c1ee05a04a1f7e2a9640bc3</citedby><cites>FETCH-LOGICAL-c293t-c4b408680f8d263d27bcc031f4781c708055e7de74c1ee05a04a1f7e2a9640bc3</cites><orcidid>0000-0003-3079-8589 ; 0000-0002-0330-3686 ; 0000-0002-6602-414X ; 0000-0002-0326-3055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8642348$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Miao, Zichen</creatorcontrib><creatorcontrib>Mao, Yincan</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Ngo, Khai D. T.</creatorcontrib><title>Magnetic Integration Into a Silicon Carbide Power Module for Current Balancing</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Threshold-voltage mismatch among paralleled dies leads to unbalanced turn- on peak currents and switching energies, thus degrading reliability. A passive method employing inversely coupled inductors of tens of nH and drive-source resistors reduces current unbalance. An integrated design of the coupled inductors is required to facilitate their practical use in a power module. A layout to achieve inverse coupling, high coupling coefficient, and low voltage stress, magnetic materials suitable for operation at tens of MHz, and high current rating of tens of amperes with small magnetic core are challenging for its implementation. A module with integrated coupled inductors that achieve inverse coupling by utilizing the copper trace of the substrate and bond wires, size comparable to the silicon carbide die, coupling coefficient higher than 0.98, tens of nH operating at tens of MHz, and current rating of tens of amperes was designed, fabricated, and validated in this work. The coupled inductors with magnetic material of low-temperature cofired ceramics are compatible with existing packaging technology for module fabrication. Effectiveness on reducing transient-current mismatch at various input voltages, load currents, and gate resistances was verified by experiments. Compared with the baseline module resembling commercial modules, the module with integrated coupled inductors reduces current unbalance from 36% to 6.4% and turn- on energy difference from 28% to 2.6% while maintaining the same total switching energy and negligible change of voltage stress.</description><subject>Circuits</subject><subject>Copper</subject><subject>Coupling coefficients</subject><subject>Couplings</subject><subject>Current balancing</subject><subject>high frequency</subject><subject>Inductors</subject><subject>inverse/negative coupling</subject><subject>Low voltage</subject><subject>Magnetic cores</subject><subject>magnetic integration</subject><subject>Magnetic materials</subject><subject>Modules</subject><subject>MOSFET</subject><subject>paralleled silicon carbide (SiC) &lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfet s</subject><subject>power module</subject><subject>Resistors</subject><subject>Silicon carbide</subject><subject>Substrates</subject><subject>Switching</subject><subject>Unbalance</subject><subject>Windings</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d_Uh296ihaqHVgvW8bDaTsiVm6yZF_PcmtHiaGeZ5Z-Ah5JbCjFLQD5v1fDljQPWMKa255mdkQrWgKVCQ52QCSmXpuLkkV123A6AiAzohbyu7bbH3Llm0PW6j7X1oxz4kNvnwjXfDWNhY-gqTdfjBmKxCdWgwqUNMikOM2PbJk21s63y7vSYXtW06vDnVKfl8nm-K13T5_rIoHpepY5r3qROlAJUrqFXFcl4xWToHnNZCKuokKMgylBVK4SgiZBaEpbVEZnUuoHR8Su6Pd_cxfB-w680uHGI7vDSMqYwzqSkMFD1SLoaui1ibffRfNv4aCmbUZkZtZtRmTtqGzN0x4xHxn1e5YFwo_gdz92f5</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Miao, Zichen</creator><creator>Mao, Yincan</creator><creator>Lu, Guo-Quan</creator><creator>Ngo, Khai D. T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0002-0330-3686</orcidid><orcidid>https://orcid.org/0000-0002-6602-414X</orcidid><orcidid>https://orcid.org/0000-0002-0326-3055</orcidid></search><sort><creationdate>20191101</creationdate><title>Magnetic Integration Into a Silicon Carbide Power Module for Current Balancing</title><author>Miao, Zichen ; Mao, Yincan ; Lu, Guo-Quan ; Ngo, Khai D. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c4b408680f8d263d27bcc031f4781c708055e7de74c1ee05a04a1f7e2a9640bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Circuits</topic><topic>Copper</topic><topic>Coupling coefficients</topic><topic>Couplings</topic><topic>Current balancing</topic><topic>high frequency</topic><topic>Inductors</topic><topic>inverse/negative coupling</topic><topic>Low voltage</topic><topic>Magnetic cores</topic><topic>magnetic integration</topic><topic>Magnetic materials</topic><topic>Modules</topic><topic>MOSFET</topic><topic>paralleled silicon carbide (SiC) &lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfet s</topic><topic>power module</topic><topic>Resistors</topic><topic>Silicon carbide</topic><topic>Substrates</topic><topic>Switching</topic><topic>Unbalance</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Zichen</creatorcontrib><creatorcontrib>Mao, Yincan</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Ngo, Khai D. T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Zichen</au><au>Mao, Yincan</au><au>Lu, Guo-Quan</au><au>Ngo, Khai D. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Integration Into a Silicon Carbide Power Module for Current Balancing</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>34</volume><issue>11</issue><spage>11026</spage><epage>11035</epage><pages>11026-11035</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Threshold-voltage mismatch among paralleled dies leads to unbalanced turn- on peak currents and switching energies, thus degrading reliability. A passive method employing inversely coupled inductors of tens of nH and drive-source resistors reduces current unbalance. An integrated design of the coupled inductors is required to facilitate their practical use in a power module. A layout to achieve inverse coupling, high coupling coefficient, and low voltage stress, magnetic materials suitable for operation at tens of MHz, and high current rating of tens of amperes with small magnetic core are challenging for its implementation. A module with integrated coupled inductors that achieve inverse coupling by utilizing the copper trace of the substrate and bond wires, size comparable to the silicon carbide die, coupling coefficient higher than 0.98, tens of nH operating at tens of MHz, and current rating of tens of amperes was designed, fabricated, and validated in this work. The coupled inductors with magnetic material of low-temperature cofired ceramics are compatible with existing packaging technology for module fabrication. Effectiveness on reducing transient-current mismatch at various input voltages, load currents, and gate resistances was verified by experiments. Compared with the baseline module resembling commercial modules, the module with integrated coupled inductors reduces current unbalance from 36% to 6.4% and turn- on energy difference from 28% to 2.6% while maintaining the same total switching energy and negligible change of voltage stress.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2019.2899393</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0002-0330-3686</orcidid><orcidid>https://orcid.org/0000-0002-6602-414X</orcidid><orcidid>https://orcid.org/0000-0002-0326-3055</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2019-11, Vol.34 (11), p.11026-11035
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2019_2899393
source IEEE Xplore (Online service)
subjects Circuits
Copper
Coupling coefficients
Couplings
Current balancing
high frequency
Inductors
inverse/negative coupling
Low voltage
Magnetic cores
magnetic integration
Magnetic materials
Modules
MOSFET
paralleled silicon carbide (SiC) <sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfet s
power module
Resistors
Silicon carbide
Substrates
Switching
Unbalance
Windings
title Magnetic Integration Into a Silicon Carbide Power Module for Current Balancing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Integration%20Into%20a%20Silicon%20Carbide%20Power%20Module%20for%20Current%20Balancing&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Miao,%20Zichen&rft.date=2019-11-01&rft.volume=34&rft.issue=11&rft.spage=11026&rft.epage=11035&rft.pages=11026-11035&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2019.2899393&rft_dat=%3Cproquest_cross%3E2285327910%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-c4b408680f8d263d27bcc031f4781c708055e7de74c1ee05a04a1f7e2a9640bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285327910&rft_id=info:pmid/&rft_ieee_id=8642348&rfr_iscdi=true