Loading…
Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature
In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the wi...
Saved in:
Published in: | IEEE transactions on power electronics 2022-10, Vol.37 (10), p.11507-11510 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373 |
---|---|
cites | cdi_FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373 |
container_end_page | 11510 |
container_issue | 10 |
container_start_page | 11507 |
container_title | IEEE transactions on power electronics |
container_volume | 37 |
creator | Zhang, Chi Li, Sheng Lu, Weihao Liu, Siyang Ma, Yanfeng Huang, Jingwen Wei, Jiaxing Zhang, Long Sun, Weifeng |
description | In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the withstanding behaviors and final critical breakdown voltage of p-GaN HEMT during UIS process at CT are completely consistent with the results at room temperature. As proved, the resonant circuit formed by device output capacitance and load inductor is the key factor influencing UIS waveforms, and such state is temperature insensitive. Furthermore, the inverse-piezoelectric effect induced by high electric field during UIS process is demonstrated to be the original cause that makes this temperature-independent failure phenomenon. In conclusion, the UIS withstanding capability of p-GaN HEMT will not be degraded in such an extremely low temperature scene, indicating a superiority of p-GaN HEMT for special applications compared with traditional devices. |
doi_str_mv | 10.1109/TPEL.2022.3173725 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2022_3173725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772395</ieee_id><sourcerecordid>2679398049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AOPLEp87b9uNro9KEEhQTBzPTdfdwQhss90w_HtHID6dl--ck3yEPDIIGQP1kn5NFiEHzkPBpJA8viIDpiJGgYG8JgNIkpgmSolbcuf9FoBFMbABWa4quzP7BnM6r_LOtuUB6fdv2dpNWa2DN9yYQ1k7H9RF0NCp-Qxmk4_UB6YNxu5Yr7EqbZBiP-BM2zm8JzeF2Xl8uOSQrN4n6XhGF8vpfPy6oJZz0dLc5rFRPOKIkbVGwQhiK9EalgjOwWSQZ7JQDEcxZEmkFEqBtjDIICu4kGJIns-7jat_OvSt3tadq_pLzUdSCZVApHqKnSnrau8dFrpx5d64o2agT970yZs-edMXb33n6dwpEfGfV1JyoWLxB32PaTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679398049</pqid></control><display><type>article</type><title>Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Chi ; Li, Sheng ; Lu, Weihao ; Liu, Siyang ; Ma, Yanfeng ; Huang, Jingwen ; Wei, Jiaxing ; Zhang, Long ; Sun, Weifeng</creator><creatorcontrib>Zhang, Chi ; Li, Sheng ; Lu, Weihao ; Liu, Siyang ; Ma, Yanfeng ; Huang, Jingwen ; Wei, Jiaxing ; Zhang, Long ; Sun, Weifeng</creatorcontrib><description>In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the withstanding behaviors and final critical breakdown voltage of p-GaN HEMT during UIS process at CT are completely consistent with the results at room temperature. As proved, the resonant circuit formed by device output capacitance and load inductor is the key factor influencing UIS waveforms, and such state is temperature insensitive. Furthermore, the inverse-piezoelectric effect induced by high electric field during UIS process is demonstrated to be the original cause that makes this temperature-independent failure phenomenon. In conclusion, the UIS withstanding capability of p-GaN HEMT will not be degraded in such an extremely low temperature scene, indicating a superiority of p-GaN HEMT for special applications compared with traditional devices.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3173725</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Cryogenic temperature ; Cryogenic temperature (CT) ; Electric fields ; Failure analysis ; Gallium nitride ; gallium nitride (GaN) ; Gallium nitrides ; HEMTs ; High electron mobility transistors ; high-electron-mobility transistors (HEMTs) ; Logic gates ; Low temperature ; MODFETs ; MOSFET ; Piezoelectricity ; Room temperature ; Semiconductor devices ; Silicon carbide ; Switching ; Temperature dependence ; unclamped-inductive-switching ; Waveforms</subject><ispartof>IEEE transactions on power electronics, 2022-10, Vol.37 (10), p.11507-11510</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373</citedby><cites>FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373</cites><orcidid>0000-0001-6498-9901 ; 0000-0002-3289-8877 ; 0000-0003-4729-9460 ; 0000-0003-0254-6085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Lu, Weihao</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Ma, Yanfeng</creatorcontrib><creatorcontrib>Huang, Jingwen</creatorcontrib><creatorcontrib>Wei, Jiaxing</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><title>Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the withstanding behaviors and final critical breakdown voltage of p-GaN HEMT during UIS process at CT are completely consistent with the results at room temperature. As proved, the resonant circuit formed by device output capacitance and load inductor is the key factor influencing UIS waveforms, and such state is temperature insensitive. Furthermore, the inverse-piezoelectric effect induced by high electric field during UIS process is demonstrated to be the original cause that makes this temperature-independent failure phenomenon. In conclusion, the UIS withstanding capability of p-GaN HEMT will not be degraded in such an extremely low temperature scene, indicating a superiority of p-GaN HEMT for special applications compared with traditional devices.</description><subject>Circuits</subject><subject>Cryogenic temperature</subject><subject>Cryogenic temperature (CT)</subject><subject>Electric fields</subject><subject>Failure analysis</subject><subject>Gallium nitride</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>high-electron-mobility transistors (HEMTs)</subject><subject>Logic gates</subject><subject>Low temperature</subject><subject>MODFETs</subject><subject>MOSFET</subject><subject>Piezoelectricity</subject><subject>Room temperature</subject><subject>Semiconductor devices</subject><subject>Silicon carbide</subject><subject>Switching</subject><subject>Temperature dependence</subject><subject>unclamped-inductive-switching</subject><subject>Waveforms</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFPwjAUhRujiYj-AOPLEp87b9uNro9KEEhQTBzPTdfdwQhss90w_HtHID6dl--ck3yEPDIIGQP1kn5NFiEHzkPBpJA8viIDpiJGgYG8JgNIkpgmSolbcuf9FoBFMbABWa4quzP7BnM6r_LOtuUB6fdv2dpNWa2DN9yYQ1k7H9RF0NCp-Qxmk4_UB6YNxu5Yr7EqbZBiP-BM2zm8JzeF2Xl8uOSQrN4n6XhGF8vpfPy6oJZz0dLc5rFRPOKIkbVGwQhiK9EalgjOwWSQZ7JQDEcxZEmkFEqBtjDIICu4kGJIns-7jat_OvSt3tadq_pLzUdSCZVApHqKnSnrau8dFrpx5d64o2agT970yZs-edMXb33n6dwpEfGfV1JyoWLxB32PaTQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Chi</creator><creator>Li, Sheng</creator><creator>Lu, Weihao</creator><creator>Liu, Siyang</creator><creator>Ma, Yanfeng</creator><creator>Huang, Jingwen</creator><creator>Wei, Jiaxing</creator><creator>Zhang, Long</creator><creator>Sun, Weifeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6498-9901</orcidid><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0003-4729-9460</orcidid><orcidid>https://orcid.org/0000-0003-0254-6085</orcidid></search><sort><creationdate>20221001</creationdate><title>Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature</title><author>Zhang, Chi ; Li, Sheng ; Lu, Weihao ; Liu, Siyang ; Ma, Yanfeng ; Huang, Jingwen ; Wei, Jiaxing ; Zhang, Long ; Sun, Weifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Cryogenic temperature</topic><topic>Cryogenic temperature (CT)</topic><topic>Electric fields</topic><topic>Failure analysis</topic><topic>Gallium nitride</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>high-electron-mobility transistors (HEMTs)</topic><topic>Logic gates</topic><topic>Low temperature</topic><topic>MODFETs</topic><topic>MOSFET</topic><topic>Piezoelectricity</topic><topic>Room temperature</topic><topic>Semiconductor devices</topic><topic>Silicon carbide</topic><topic>Switching</topic><topic>Temperature dependence</topic><topic>unclamped-inductive-switching</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Lu, Weihao</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Ma, Yanfeng</creatorcontrib><creatorcontrib>Huang, Jingwen</creatorcontrib><creatorcontrib>Wei, Jiaxing</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chi</au><au>Li, Sheng</au><au>Lu, Weihao</au><au>Liu, Siyang</au><au>Ma, Yanfeng</au><au>Huang, Jingwen</au><au>Wei, Jiaxing</au><au>Zhang, Long</au><au>Sun, Weifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>37</volume><issue>10</issue><spage>11507</spage><epage>11510</epage><pages>11507-11510</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the withstanding behaviors and final critical breakdown voltage of p-GaN HEMT during UIS process at CT are completely consistent with the results at room temperature. As proved, the resonant circuit formed by device output capacitance and load inductor is the key factor influencing UIS waveforms, and such state is temperature insensitive. Furthermore, the inverse-piezoelectric effect induced by high electric field during UIS process is demonstrated to be the original cause that makes this temperature-independent failure phenomenon. In conclusion, the UIS withstanding capability of p-GaN HEMT will not be degraded in such an extremely low temperature scene, indicating a superiority of p-GaN HEMT for special applications compared with traditional devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3173725</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6498-9901</orcidid><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0003-4729-9460</orcidid><orcidid>https://orcid.org/0000-0003-0254-6085</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2022-10, Vol.37 (10), p.11507-11510 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2022_3173725 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Circuits Cryogenic temperature Cryogenic temperature (CT) Electric fields Failure analysis Gallium nitride gallium nitride (GaN) Gallium nitrides HEMTs High electron mobility transistors high-electron-mobility transistors (HEMTs) Logic gates Low temperature MODFETs MOSFET Piezoelectricity Room temperature Semiconductor devices Silicon carbide Switching Temperature dependence unclamped-inductive-switching Waveforms |
title | Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unclamped-Inductive-Switching%20Behaviors%20of%20p-GaN%20HEMTs%20at%20Cryogenic%20Temperature&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zhang,%20Chi&rft.date=2022-10-01&rft.volume=37&rft.issue=10&rft.spage=11507&rft.epage=11510&rft.pages=11507-11510&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3173725&rft_dat=%3Cproquest_cross%3E2679398049%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679398049&rft_id=info:pmid/&rft_ieee_id=9772395&rfr_iscdi=true |