Loading…

Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature

In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the wi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2022-10, Vol.37 (10), p.11507-11510
Main Authors: Zhang, Chi, Li, Sheng, Lu, Weihao, Liu, Siyang, Ma, Yanfeng, Huang, Jingwen, Wei, Jiaxing, Zhang, Long, Sun, Weifeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373
cites cdi_FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373
container_end_page 11510
container_issue 10
container_start_page 11507
container_title IEEE transactions on power electronics
container_volume 37
creator Zhang, Chi
Li, Sheng
Lu, Weihao
Liu, Siyang
Ma, Yanfeng
Huang, Jingwen
Wei, Jiaxing
Zhang, Long
Sun, Weifeng
description In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the withstanding behaviors and final critical breakdown voltage of p-GaN HEMT during UIS process at CT are completely consistent with the results at room temperature. As proved, the resonant circuit formed by device output capacitance and load inductor is the key factor influencing UIS waveforms, and such state is temperature insensitive. Furthermore, the inverse-piezoelectric effect induced by high electric field during UIS process is demonstrated to be the original cause that makes this temperature-independent failure phenomenon. In conclusion, the UIS withstanding capability of p-GaN HEMT will not be degraded in such an extremely low temperature scene, indicating a superiority of p-GaN HEMT for special applications compared with traditional devices.
doi_str_mv 10.1109/TPEL.2022.3173725
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2022_3173725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772395</ieee_id><sourcerecordid>2679398049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AOPLEp87b9uNro9KEEhQTBzPTdfdwQhss90w_HtHID6dl--ck3yEPDIIGQP1kn5NFiEHzkPBpJA8viIDpiJGgYG8JgNIkpgmSolbcuf9FoBFMbABWa4quzP7BnM6r_LOtuUB6fdv2dpNWa2DN9yYQ1k7H9RF0NCp-Qxmk4_UB6YNxu5Yr7EqbZBiP-BM2zm8JzeF2Xl8uOSQrN4n6XhGF8vpfPy6oJZz0dLc5rFRPOKIkbVGwQhiK9EalgjOwWSQZ7JQDEcxZEmkFEqBtjDIICu4kGJIns-7jat_OvSt3tadq_pLzUdSCZVApHqKnSnrau8dFrpx5d64o2agT970yZs-edMXb33n6dwpEfGfV1JyoWLxB32PaTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679398049</pqid></control><display><type>article</type><title>Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Chi ; Li, Sheng ; Lu, Weihao ; Liu, Siyang ; Ma, Yanfeng ; Huang, Jingwen ; Wei, Jiaxing ; Zhang, Long ; Sun, Weifeng</creator><creatorcontrib>Zhang, Chi ; Li, Sheng ; Lu, Weihao ; Liu, Siyang ; Ma, Yanfeng ; Huang, Jingwen ; Wei, Jiaxing ; Zhang, Long ; Sun, Weifeng</creatorcontrib><description>In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the withstanding behaviors and final critical breakdown voltage of p-GaN HEMT during UIS process at CT are completely consistent with the results at room temperature. As proved, the resonant circuit formed by device output capacitance and load inductor is the key factor influencing UIS waveforms, and such state is temperature insensitive. Furthermore, the inverse-piezoelectric effect induced by high electric field during UIS process is demonstrated to be the original cause that makes this temperature-independent failure phenomenon. In conclusion, the UIS withstanding capability of p-GaN HEMT will not be degraded in such an extremely low temperature scene, indicating a superiority of p-GaN HEMT for special applications compared with traditional devices.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3173725</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Cryogenic temperature ; Cryogenic temperature (CT) ; Electric fields ; Failure analysis ; Gallium nitride ; gallium nitride (GaN) ; Gallium nitrides ; HEMTs ; High electron mobility transistors ; high-electron-mobility transistors (HEMTs) ; Logic gates ; Low temperature ; MODFETs ; MOSFET ; Piezoelectricity ; Room temperature ; Semiconductor devices ; Silicon carbide ; Switching ; Temperature dependence ; unclamped-inductive-switching ; Waveforms</subject><ispartof>IEEE transactions on power electronics, 2022-10, Vol.37 (10), p.11507-11510</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373</citedby><cites>FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373</cites><orcidid>0000-0001-6498-9901 ; 0000-0002-3289-8877 ; 0000-0003-4729-9460 ; 0000-0003-0254-6085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Lu, Weihao</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Ma, Yanfeng</creatorcontrib><creatorcontrib>Huang, Jingwen</creatorcontrib><creatorcontrib>Wei, Jiaxing</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><title>Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the withstanding behaviors and final critical breakdown voltage of p-GaN HEMT during UIS process at CT are completely consistent with the results at room temperature. As proved, the resonant circuit formed by device output capacitance and load inductor is the key factor influencing UIS waveforms, and such state is temperature insensitive. Furthermore, the inverse-piezoelectric effect induced by high electric field during UIS process is demonstrated to be the original cause that makes this temperature-independent failure phenomenon. In conclusion, the UIS withstanding capability of p-GaN HEMT will not be degraded in such an extremely low temperature scene, indicating a superiority of p-GaN HEMT for special applications compared with traditional devices.</description><subject>Circuits</subject><subject>Cryogenic temperature</subject><subject>Cryogenic temperature (CT)</subject><subject>Electric fields</subject><subject>Failure analysis</subject><subject>Gallium nitride</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>high-electron-mobility transistors (HEMTs)</subject><subject>Logic gates</subject><subject>Low temperature</subject><subject>MODFETs</subject><subject>MOSFET</subject><subject>Piezoelectricity</subject><subject>Room temperature</subject><subject>Semiconductor devices</subject><subject>Silicon carbide</subject><subject>Switching</subject><subject>Temperature dependence</subject><subject>unclamped-inductive-switching</subject><subject>Waveforms</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFPwjAUhRujiYj-AOPLEp87b9uNro9KEEhQTBzPTdfdwQhss90w_HtHID6dl--ck3yEPDIIGQP1kn5NFiEHzkPBpJA8viIDpiJGgYG8JgNIkpgmSolbcuf9FoBFMbABWa4quzP7BnM6r_LOtuUB6fdv2dpNWa2DN9yYQ1k7H9RF0NCp-Qxmk4_UB6YNxu5Yr7EqbZBiP-BM2zm8JzeF2Xl8uOSQrN4n6XhGF8vpfPy6oJZz0dLc5rFRPOKIkbVGwQhiK9EalgjOwWSQZ7JQDEcxZEmkFEqBtjDIICu4kGJIns-7jat_OvSt3tadq_pLzUdSCZVApHqKnSnrau8dFrpx5d64o2agT970yZs-edMXb33n6dwpEfGfV1JyoWLxB32PaTQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Chi</creator><creator>Li, Sheng</creator><creator>Lu, Weihao</creator><creator>Liu, Siyang</creator><creator>Ma, Yanfeng</creator><creator>Huang, Jingwen</creator><creator>Wei, Jiaxing</creator><creator>Zhang, Long</creator><creator>Sun, Weifeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6498-9901</orcidid><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0003-4729-9460</orcidid><orcidid>https://orcid.org/0000-0003-0254-6085</orcidid></search><sort><creationdate>20221001</creationdate><title>Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature</title><author>Zhang, Chi ; Li, Sheng ; Lu, Weihao ; Liu, Siyang ; Ma, Yanfeng ; Huang, Jingwen ; Wei, Jiaxing ; Zhang, Long ; Sun, Weifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Cryogenic temperature</topic><topic>Cryogenic temperature (CT)</topic><topic>Electric fields</topic><topic>Failure analysis</topic><topic>Gallium nitride</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>high-electron-mobility transistors (HEMTs)</topic><topic>Logic gates</topic><topic>Low temperature</topic><topic>MODFETs</topic><topic>MOSFET</topic><topic>Piezoelectricity</topic><topic>Room temperature</topic><topic>Semiconductor devices</topic><topic>Silicon carbide</topic><topic>Switching</topic><topic>Temperature dependence</topic><topic>unclamped-inductive-switching</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Lu, Weihao</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Ma, Yanfeng</creatorcontrib><creatorcontrib>Huang, Jingwen</creatorcontrib><creatorcontrib>Wei, Jiaxing</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chi</au><au>Li, Sheng</au><au>Lu, Weihao</au><au>Liu, Siyang</au><au>Ma, Yanfeng</au><au>Huang, Jingwen</au><au>Wei, Jiaxing</au><au>Zhang, Long</au><au>Sun, Weifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>37</volume><issue>10</issue><spage>11507</spage><epage>11510</epage><pages>11507-11510</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In this letter, the unclamped-inductive-switching (UIS) behaviors of GaN-based high-electron-mobility transistors with p-type GaN gate (p-GaN HEMTs) at cryogenic temperature (CT) are first revealed. Unlike the temperature-dependent avalanche-induced failure for SiC devices during UIS process, the withstanding behaviors and final critical breakdown voltage of p-GaN HEMT during UIS process at CT are completely consistent with the results at room temperature. As proved, the resonant circuit formed by device output capacitance and load inductor is the key factor influencing UIS waveforms, and such state is temperature insensitive. Furthermore, the inverse-piezoelectric effect induced by high electric field during UIS process is demonstrated to be the original cause that makes this temperature-independent failure phenomenon. In conclusion, the UIS withstanding capability of p-GaN HEMT will not be degraded in such an extremely low temperature scene, indicating a superiority of p-GaN HEMT for special applications compared with traditional devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3173725</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6498-9901</orcidid><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0003-4729-9460</orcidid><orcidid>https://orcid.org/0000-0003-0254-6085</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-10, Vol.37 (10), p.11507-11510
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2022_3173725
source IEEE Electronic Library (IEL) Journals
subjects Circuits
Cryogenic temperature
Cryogenic temperature (CT)
Electric fields
Failure analysis
Gallium nitride
gallium nitride (GaN)
Gallium nitrides
HEMTs
High electron mobility transistors
high-electron-mobility transistors (HEMTs)
Logic gates
Low temperature
MODFETs
MOSFET
Piezoelectricity
Room temperature
Semiconductor devices
Silicon carbide
Switching
Temperature dependence
unclamped-inductive-switching
Waveforms
title Unclamped-Inductive-Switching Behaviors of p-GaN HEMTs at Cryogenic Temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unclamped-Inductive-Switching%20Behaviors%20of%20p-GaN%20HEMTs%20at%20Cryogenic%20Temperature&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zhang,%20Chi&rft.date=2022-10-01&rft.volume=37&rft.issue=10&rft.spage=11507&rft.epage=11510&rft.pages=11507-11510&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3173725&rft_dat=%3Cproquest_cross%3E2679398049%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-dcd5a9242ee4cca90605c7eca183220ab0db7f91e650b8499e73ecfae10bf2373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679398049&rft_id=info:pmid/&rft_ieee_id=9772395&rfr_iscdi=true