Loading…

Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement

The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2023-09, Vol.38 (9), p.1-14
Main Authors: Ding, Lijian, Song, Ruya, Zhao, Shuang, Wang, Jianing, Mantooth, H. Alan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673
cites cdi_FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673
container_end_page 14
container_issue 9
container_start_page 1
container_title IEEE transactions on power electronics
container_volume 38
creator Ding, Lijian
Song, Ruya
Zhao, Shuang
Wang, Jianing
Mantooth, H. Alan
description The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effect heat sink (PEHS), which is a PN particle module embedded between the power devices base plate and the heatsink, and its two control strategies are proposed. Via adjusting the excitation current and power of the PEHS, the equivalent thermal resistance from the IGBT/MOSFET chip to the ambient can be adjusted dynamically. It can adaptively suppress the junction temperature fluctuations without changing the converter control strategy as well as the output waveform. A theoretic model is built to quantify the power devices' lifetime cycle against the excitation current and power of PEHS, and the three operating modes of the PEHS are analyzed with the model. The experimental study is conducted to validate that after using the PEHS proposed in this study, Δ T j can be reduced by a maximum of 31.27%, and T m can be reduced by a maximum of 36.67%. According to the Coffin-Manson model, the proposed method can effectively enhance the long-term reliability of the system.
doi_str_mv 10.1109/TPEL.2023.3290196
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2023_3290196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10167815</ieee_id><sourcerecordid>2844896239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHARcD01r0kmy1JHKxQstO6EIZO5oanzqJm00n_vlLpwdeHec87lfAjdUzKhlOin9TJfTBhhfMKZJlTLCzSiWtCEUKIu0YhkWZpkWvNrdNP3W0KoSAkdoc-pjf4AeAl19BBw7hzYiOdgIl759gu7LuBl9zOcVtB427XV3sZh9wwHbwGvNxAaU-NVNKWvfTzivN2Y1kIDbbxFV87UPdz9zTH6eMnXs3myeH99m00XiWVaxIQLJ9JKpqAdY6XiknHDCOHARGokWKqGIqlQGVGmIqrUQlqZOdBcVrKUio_R4zl3F7rvPfSx2Hb70A4vC5YJkekhUQ8qelbZ0PV9AFfsgm9MOBaUFCeIxQlicYJY_EEcPA9njweAf3oqVUZT_gtsZWyx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844896239</pqid></control><display><type>article</type><title>Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ding, Lijian ; Song, Ruya ; Zhao, Shuang ; Wang, Jianing ; Mantooth, H. Alan</creator><creatorcontrib>Ding, Lijian ; Song, Ruya ; Zhao, Shuang ; Wang, Jianing ; Mantooth, H. Alan</creatorcontrib><description>The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effect heat sink (PEHS), which is a PN particle module embedded between the power devices base plate and the heatsink, and its two control strategies are proposed. Via adjusting the excitation current and power of the PEHS, the equivalent thermal resistance from the IGBT/MOSFET chip to the ambient can be adjusted dynamically. It can adaptively suppress the junction temperature fluctuations without changing the converter control strategy as well as the output waveform. A theoretic model is built to quantify the power devices' lifetime cycle against the excitation current and power of PEHS, and the three operating modes of the PEHS are analyzed with the model. The experimental study is conducted to validate that after using the PEHS proposed in this study, Δ T j can be reduced by a maximum of 31.27%, and T m can be reduced by a maximum of 36.67%. According to the Coffin-Manson model, the proposed method can effectively enhance the long-term reliability of the system.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3290196</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base plates ; Excitation ; Failure modes ; Fatigue failure ; Fluctuations ; Heat sinks ; junction temperature ; Junctions ; lifetime ; Peltier effect ; Peltier effects ; Power device ; Power semiconductor devices ; Reliability ; Semiconductors ; Service life assessment ; Switching frequency ; Thermal resistance ; Thermal stability ; Thermal stress ; Waveforms</subject><ispartof>IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673</citedby><cites>FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673</cites><orcidid>0000-0002-2259-9830 ; 0000-0002-3631-5309 ; 0000-0001-6447-5345 ; 0000-0002-9494-7670 ; 0009-0006-6002-8218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10167815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ding, Lijian</creatorcontrib><creatorcontrib>Song, Ruya</creatorcontrib><creatorcontrib>Zhao, Shuang</creatorcontrib><creatorcontrib>Wang, Jianing</creatorcontrib><creatorcontrib>Mantooth, H. Alan</creatorcontrib><title>Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effect heat sink (PEHS), which is a PN particle module embedded between the power devices base plate and the heatsink, and its two control strategies are proposed. Via adjusting the excitation current and power of the PEHS, the equivalent thermal resistance from the IGBT/MOSFET chip to the ambient can be adjusted dynamically. It can adaptively suppress the junction temperature fluctuations without changing the converter control strategy as well as the output waveform. A theoretic model is built to quantify the power devices' lifetime cycle against the excitation current and power of PEHS, and the three operating modes of the PEHS are analyzed with the model. The experimental study is conducted to validate that after using the PEHS proposed in this study, Δ T j can be reduced by a maximum of 31.27%, and T m can be reduced by a maximum of 36.67%. According to the Coffin-Manson model, the proposed method can effectively enhance the long-term reliability of the system.</description><subject>Base plates</subject><subject>Excitation</subject><subject>Failure modes</subject><subject>Fatigue failure</subject><subject>Fluctuations</subject><subject>Heat sinks</subject><subject>junction temperature</subject><subject>Junctions</subject><subject>lifetime</subject><subject>Peltier effect</subject><subject>Peltier effects</subject><subject>Power device</subject><subject>Power semiconductor devices</subject><subject>Reliability</subject><subject>Semiconductors</subject><subject>Service life assessment</subject><subject>Switching frequency</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><subject>Thermal stress</subject><subject>Waveforms</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoWKs_QHARcD01r0kmy1JHKxQstO6EIZO5oanzqJm00n_vlLpwdeHec87lfAjdUzKhlOin9TJfTBhhfMKZJlTLCzSiWtCEUKIu0YhkWZpkWvNrdNP3W0KoSAkdoc-pjf4AeAl19BBw7hzYiOdgIl759gu7LuBl9zOcVtB427XV3sZh9wwHbwGvNxAaU-NVNKWvfTzivN2Y1kIDbbxFV87UPdz9zTH6eMnXs3myeH99m00XiWVaxIQLJ9JKpqAdY6XiknHDCOHARGokWKqGIqlQGVGmIqrUQlqZOdBcVrKUio_R4zl3F7rvPfSx2Hb70A4vC5YJkekhUQ8qelbZ0PV9AFfsgm9MOBaUFCeIxQlicYJY_EEcPA9njweAf3oqVUZT_gtsZWyx</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Ding, Lijian</creator><creator>Song, Ruya</creator><creator>Zhao, Shuang</creator><creator>Wang, Jianing</creator><creator>Mantooth, H. Alan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2259-9830</orcidid><orcidid>https://orcid.org/0000-0002-3631-5309</orcidid><orcidid>https://orcid.org/0000-0001-6447-5345</orcidid><orcidid>https://orcid.org/0000-0002-9494-7670</orcidid><orcidid>https://orcid.org/0009-0006-6002-8218</orcidid></search><sort><creationdate>20230901</creationdate><title>Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement</title><author>Ding, Lijian ; Song, Ruya ; Zhao, Shuang ; Wang, Jianing ; Mantooth, H. Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Base plates</topic><topic>Excitation</topic><topic>Failure modes</topic><topic>Fatigue failure</topic><topic>Fluctuations</topic><topic>Heat sinks</topic><topic>junction temperature</topic><topic>Junctions</topic><topic>lifetime</topic><topic>Peltier effect</topic><topic>Peltier effects</topic><topic>Power device</topic><topic>Power semiconductor devices</topic><topic>Reliability</topic><topic>Semiconductors</topic><topic>Service life assessment</topic><topic>Switching frequency</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><topic>Thermal stress</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Lijian</creatorcontrib><creatorcontrib>Song, Ruya</creatorcontrib><creatorcontrib>Zhao, Shuang</creatorcontrib><creatorcontrib>Wang, Jianing</creatorcontrib><creatorcontrib>Mantooth, H. Alan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Lijian</au><au>Song, Ruya</au><au>Zhao, Shuang</au><au>Wang, Jianing</au><au>Mantooth, H. Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>38</volume><issue>9</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effect heat sink (PEHS), which is a PN particle module embedded between the power devices base plate and the heatsink, and its two control strategies are proposed. Via adjusting the excitation current and power of the PEHS, the equivalent thermal resistance from the IGBT/MOSFET chip to the ambient can be adjusted dynamically. It can adaptively suppress the junction temperature fluctuations without changing the converter control strategy as well as the output waveform. A theoretic model is built to quantify the power devices' lifetime cycle against the excitation current and power of PEHS, and the three operating modes of the PEHS are analyzed with the model. The experimental study is conducted to validate that after using the PEHS proposed in this study, Δ T j can be reduced by a maximum of 31.27%, and T m can be reduced by a maximum of 36.67%. According to the Coffin-Manson model, the proposed method can effectively enhance the long-term reliability of the system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3290196</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2259-9830</orcidid><orcidid>https://orcid.org/0000-0002-3631-5309</orcidid><orcidid>https://orcid.org/0000-0001-6447-5345</orcidid><orcidid>https://orcid.org/0000-0002-9494-7670</orcidid><orcidid>https://orcid.org/0009-0006-6002-8218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.1-14
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2023_3290196
source IEEE Electronic Library (IEL) Journals
subjects Base plates
Excitation
Failure modes
Fatigue failure
Fluctuations
Heat sinks
junction temperature
Junctions
lifetime
Peltier effect
Peltier effects
Power device
Power semiconductor devices
Reliability
Semiconductors
Service life assessment
Switching frequency
Thermal resistance
Thermal stability
Thermal stress
Waveforms
title Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Peltier%20Effect%20Heat%20Sink%20for%20Power%20Semiconductor%20Device%20Thermal%20Stability%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Ding,%20Lijian&rft.date=2023-09-01&rft.volume=38&rft.issue=9&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3290196&rft_dat=%3Cproquest_cross%3E2844896239%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844896239&rft_id=info:pmid/&rft_ieee_id=10167815&rfr_iscdi=true