Loading…
Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement
The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effec...
Saved in:
Published in: | IEEE transactions on power electronics 2023-09, Vol.38 (9), p.1-14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673 |
container_end_page | 14 |
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE transactions on power electronics |
container_volume | 38 |
creator | Ding, Lijian Song, Ruya Zhao, Shuang Wang, Jianing Mantooth, H. Alan |
description | The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effect heat sink (PEHS), which is a PN particle module embedded between the power devices base plate and the heatsink, and its two control strategies are proposed. Via adjusting the excitation current and power of the PEHS, the equivalent thermal resistance from the IGBT/MOSFET chip to the ambient can be adjusted dynamically. It can adaptively suppress the junction temperature fluctuations without changing the converter control strategy as well as the output waveform. A theoretic model is built to quantify the power devices' lifetime cycle against the excitation current and power of PEHS, and the three operating modes of the PEHS are analyzed with the model. The experimental study is conducted to validate that after using the PEHS proposed in this study, Δ T j can be reduced by a maximum of 31.27%, and T m can be reduced by a maximum of 36.67%. According to the Coffin-Manson model, the proposed method can effectively enhance the long-term reliability of the system. |
doi_str_mv | 10.1109/TPEL.2023.3290196 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2023_3290196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10167815</ieee_id><sourcerecordid>2844896239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHARcD01r0kmy1JHKxQstO6EIZO5oanzqJm00n_vlLpwdeHec87lfAjdUzKhlOin9TJfTBhhfMKZJlTLCzSiWtCEUKIu0YhkWZpkWvNrdNP3W0KoSAkdoc-pjf4AeAl19BBw7hzYiOdgIl759gu7LuBl9zOcVtB427XV3sZh9wwHbwGvNxAaU-NVNKWvfTzivN2Y1kIDbbxFV87UPdz9zTH6eMnXs3myeH99m00XiWVaxIQLJ9JKpqAdY6XiknHDCOHARGokWKqGIqlQGVGmIqrUQlqZOdBcVrKUio_R4zl3F7rvPfSx2Hb70A4vC5YJkekhUQ8qelbZ0PV9AFfsgm9MOBaUFCeIxQlicYJY_EEcPA9njweAf3oqVUZT_gtsZWyx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844896239</pqid></control><display><type>article</type><title>Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ding, Lijian ; Song, Ruya ; Zhao, Shuang ; Wang, Jianing ; Mantooth, H. Alan</creator><creatorcontrib>Ding, Lijian ; Song, Ruya ; Zhao, Shuang ; Wang, Jianing ; Mantooth, H. Alan</creatorcontrib><description>The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effect heat sink (PEHS), which is a PN particle module embedded between the power devices base plate and the heatsink, and its two control strategies are proposed. Via adjusting the excitation current and power of the PEHS, the equivalent thermal resistance from the IGBT/MOSFET chip to the ambient can be adjusted dynamically. It can adaptively suppress the junction temperature fluctuations without changing the converter control strategy as well as the output waveform. A theoretic model is built to quantify the power devices' lifetime cycle against the excitation current and power of PEHS, and the three operating modes of the PEHS are analyzed with the model. The experimental study is conducted to validate that after using the PEHS proposed in this study, Δ T j can be reduced by a maximum of 31.27%, and T m can be reduced by a maximum of 36.67%. According to the Coffin-Manson model, the proposed method can effectively enhance the long-term reliability of the system.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3290196</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base plates ; Excitation ; Failure modes ; Fatigue failure ; Fluctuations ; Heat sinks ; junction temperature ; Junctions ; lifetime ; Peltier effect ; Peltier effects ; Power device ; Power semiconductor devices ; Reliability ; Semiconductors ; Service life assessment ; Switching frequency ; Thermal resistance ; Thermal stability ; Thermal stress ; Waveforms</subject><ispartof>IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673</citedby><cites>FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673</cites><orcidid>0000-0002-2259-9830 ; 0000-0002-3631-5309 ; 0000-0001-6447-5345 ; 0000-0002-9494-7670 ; 0009-0006-6002-8218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10167815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ding, Lijian</creatorcontrib><creatorcontrib>Song, Ruya</creatorcontrib><creatorcontrib>Zhao, Shuang</creatorcontrib><creatorcontrib>Wang, Jianing</creatorcontrib><creatorcontrib>Mantooth, H. Alan</creatorcontrib><title>Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effect heat sink (PEHS), which is a PN particle module embedded between the power devices base plate and the heatsink, and its two control strategies are proposed. Via adjusting the excitation current and power of the PEHS, the equivalent thermal resistance from the IGBT/MOSFET chip to the ambient can be adjusted dynamically. It can adaptively suppress the junction temperature fluctuations without changing the converter control strategy as well as the output waveform. A theoretic model is built to quantify the power devices' lifetime cycle against the excitation current and power of PEHS, and the three operating modes of the PEHS are analyzed with the model. The experimental study is conducted to validate that after using the PEHS proposed in this study, Δ T j can be reduced by a maximum of 31.27%, and T m can be reduced by a maximum of 36.67%. According to the Coffin-Manson model, the proposed method can effectively enhance the long-term reliability of the system.</description><subject>Base plates</subject><subject>Excitation</subject><subject>Failure modes</subject><subject>Fatigue failure</subject><subject>Fluctuations</subject><subject>Heat sinks</subject><subject>junction temperature</subject><subject>Junctions</subject><subject>lifetime</subject><subject>Peltier effect</subject><subject>Peltier effects</subject><subject>Power device</subject><subject>Power semiconductor devices</subject><subject>Reliability</subject><subject>Semiconductors</subject><subject>Service life assessment</subject><subject>Switching frequency</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><subject>Thermal stress</subject><subject>Waveforms</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoWKs_QHARcD01r0kmy1JHKxQstO6EIZO5oanzqJm00n_vlLpwdeHec87lfAjdUzKhlOin9TJfTBhhfMKZJlTLCzSiWtCEUKIu0YhkWZpkWvNrdNP3W0KoSAkdoc-pjf4AeAl19BBw7hzYiOdgIl759gu7LuBl9zOcVtB427XV3sZh9wwHbwGvNxAaU-NVNKWvfTzivN2Y1kIDbbxFV87UPdz9zTH6eMnXs3myeH99m00XiWVaxIQLJ9JKpqAdY6XiknHDCOHARGokWKqGIqlQGVGmIqrUQlqZOdBcVrKUio_R4zl3F7rvPfSx2Hb70A4vC5YJkekhUQ8qelbZ0PV9AFfsgm9MOBaUFCeIxQlicYJY_EEcPA9njweAf3oqVUZT_gtsZWyx</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Ding, Lijian</creator><creator>Song, Ruya</creator><creator>Zhao, Shuang</creator><creator>Wang, Jianing</creator><creator>Mantooth, H. Alan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2259-9830</orcidid><orcidid>https://orcid.org/0000-0002-3631-5309</orcidid><orcidid>https://orcid.org/0000-0001-6447-5345</orcidid><orcidid>https://orcid.org/0000-0002-9494-7670</orcidid><orcidid>https://orcid.org/0009-0006-6002-8218</orcidid></search><sort><creationdate>20230901</creationdate><title>Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement</title><author>Ding, Lijian ; Song, Ruya ; Zhao, Shuang ; Wang, Jianing ; Mantooth, H. Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Base plates</topic><topic>Excitation</topic><topic>Failure modes</topic><topic>Fatigue failure</topic><topic>Fluctuations</topic><topic>Heat sinks</topic><topic>junction temperature</topic><topic>Junctions</topic><topic>lifetime</topic><topic>Peltier effect</topic><topic>Peltier effects</topic><topic>Power device</topic><topic>Power semiconductor devices</topic><topic>Reliability</topic><topic>Semiconductors</topic><topic>Service life assessment</topic><topic>Switching frequency</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><topic>Thermal stress</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Lijian</creatorcontrib><creatorcontrib>Song, Ruya</creatorcontrib><creatorcontrib>Zhao, Shuang</creatorcontrib><creatorcontrib>Wang, Jianing</creatorcontrib><creatorcontrib>Mantooth, H. Alan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Lijian</au><au>Song, Ruya</au><au>Zhao, Shuang</au><au>Wang, Jianing</au><au>Mantooth, H. Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>38</volume><issue>9</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The failure caused by cumulative fatigue damage due to cyclical thermal stress is the dominant failure mode of power semiconductor devices, and it poses reliability concerns. In this regard, this research introduces a novel method for suppressing IGBT/MOSFET chip thermal fluctuation. A Peltier effect heat sink (PEHS), which is a PN particle module embedded between the power devices base plate and the heatsink, and its two control strategies are proposed. Via adjusting the excitation current and power of the PEHS, the equivalent thermal resistance from the IGBT/MOSFET chip to the ambient can be adjusted dynamically. It can adaptively suppress the junction temperature fluctuations without changing the converter control strategy as well as the output waveform. A theoretic model is built to quantify the power devices' lifetime cycle against the excitation current and power of PEHS, and the three operating modes of the PEHS are analyzed with the model. The experimental study is conducted to validate that after using the PEHS proposed in this study, Δ T j can be reduced by a maximum of 31.27%, and T m can be reduced by a maximum of 36.67%. According to the Coffin-Manson model, the proposed method can effectively enhance the long-term reliability of the system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3290196</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2259-9830</orcidid><orcidid>https://orcid.org/0000-0002-3631-5309</orcidid><orcidid>https://orcid.org/0000-0001-6447-5345</orcidid><orcidid>https://orcid.org/0000-0002-9494-7670</orcidid><orcidid>https://orcid.org/0009-0006-6002-8218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.1-14 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2023_3290196 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Base plates Excitation Failure modes Fatigue failure Fluctuations Heat sinks junction temperature Junctions lifetime Peltier effect Peltier effects Power device Power semiconductor devices Reliability Semiconductors Service life assessment Switching frequency Thermal resistance Thermal stability Thermal stress Waveforms |
title | Active Peltier Effect Heat Sink for Power Semiconductor Device Thermal Stability Enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Peltier%20Effect%20Heat%20Sink%20for%20Power%20Semiconductor%20Device%20Thermal%20Stability%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Ding,%20Lijian&rft.date=2023-09-01&rft.volume=38&rft.issue=9&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3290196&rft_dat=%3Cproquest_cross%3E2844896239%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-34f45d65e9f22b73623a2003e245a6ec17941547807ad07b946c68fe936d6b673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844896239&rft_id=info:pmid/&rft_ieee_id=10167815&rfr_iscdi=true |