Loading…

Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation

Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2025-02, Vol.40 (2), p.3077-3089
Main Authors: Zhang, Man, Li, Helong, Yang, Zhiqing, Zhao, Shuang, Wang, Xiongfei, Ding, Lijian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3
container_end_page 3089
container_issue 2
container_start_page 3077
container_title IEEE transactions on power electronics
container_volume 40
creator Zhang, Man
Li, Helong
Yang, Zhiqing
Zhao, Shuang
Wang, Xiongfei
Ding, Lijian
description Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs further investigations. This article, therefore, establishes a source-drain resistance model of SiC mosfet s under different gate bias in surge current range, which reveals the current "competition mechanism" between the MOS-channel path and the body diode path under surge current conditions. It then investigates the influence of device parameters discrepancy on surge current distribution in paralleled SiC mosfet s. It finds out that the discrepancy of body diode parameters has significant influences on surge current distribution under different gate biases, while the parameter discrepancy of MOS-channel has much smaller impact on surge current distribution, even with positive gate bias. The conclusions of this article are supported with simulation and experimental results.
doi_str_mv 10.1109/TPEL.2024.3485730
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2024_3485730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10733741</ieee_id><sourcerecordid>10_1109_TPEL_2024_3485730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3</originalsourceid><addsrcrecordid>eNpN0L1OwzAUhmELgUQpXAASg28gxcdOYntEofxIRS1KmCPbOQajkFZ2M3D3NGoHprOc5xteQm6BLQCYvm82y9WCM54vRK4KKdgZmYHOIWPA5DmZMaWKTGktLslVSt-MQV4wmJG6HuMn0mqMEYc9fQxpH4Md92E70DDQjYmm77HHjtahom_r-mnZJPoxdBhp8xVil72PpovmYNc7jGaC1-TCmz7hzenOSXNQ1Uu2Wj-_Vg-rzJUCMqdKAxIESN05zp1WgN6WGlBYrlTpbY6gCm7RFdZw6X0HjilrnceitE7MCRxnXdymFNG3uxh-TPxtgbVTlHaK0k5R2lOUg7k7moCI__6lEDIH8Qf-sV6-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Man ; Li, Helong ; Yang, Zhiqing ; Zhao, Shuang ; Wang, Xiongfei ; Ding, Lijian</creator><creatorcontrib>Zhang, Man ; Li, Helong ; Yang, Zhiqing ; Zhao, Shuang ; Wang, Xiongfei ; Ding, Lijian</creatorcontrib><description>Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs further investigations. This article, therefore, establishes a source-drain resistance model of SiC mosfet s under different gate bias in surge current range, which reveals the current "competition mechanism" between the MOS-channel path and the body diode path under surge current conditions. It then investigates the influence of device parameters discrepancy on surge current distribution in paralleled SiC mosfet s. It finds out that the discrepancy of body diode parameters has significant influences on surge current distribution under different gate biases, while the parameter discrepancy of MOS-channel has much smaller impact on surge current distribution, even with positive gate bias. The conclusions of this article are supported with simulation and experimental results.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3485730</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Current distribution ; Immune system ; Logic gates ; MOSFET ; Paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors (&lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfets) ; Semiconductor device modeling ; Silicon carbide ; surge current ; Surges ; Temperature ; Temperature measurement ; third quadrant ; Voltage</subject><ispartof>IEEE transactions on power electronics, 2025-02, Vol.40 (2), p.3077-3089</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3</cites><orcidid>0000-0002-9494-7670 ; 0000-0002-2259-9830 ; 0000-0002-6327-9729 ; 0000-0001-9251-9106 ; 0000-0003-0098-0064 ; 0009-0005-6759-1137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10733741$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Man</creatorcontrib><creatorcontrib>Li, Helong</creatorcontrib><creatorcontrib>Yang, Zhiqing</creatorcontrib><creatorcontrib>Zhao, Shuang</creatorcontrib><creatorcontrib>Wang, Xiongfei</creatorcontrib><creatorcontrib>Ding, Lijian</creatorcontrib><title>Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs further investigations. This article, therefore, establishes a source-drain resistance model of SiC mosfet s under different gate bias in surge current range, which reveals the current "competition mechanism" between the MOS-channel path and the body diode path under surge current conditions. It then investigates the influence of device parameters discrepancy on surge current distribution in paralleled SiC mosfet s. It finds out that the discrepancy of body diode parameters has significant influences on surge current distribution under different gate biases, while the parameter discrepancy of MOS-channel has much smaller impact on surge current distribution, even with positive gate bias. The conclusions of this article are supported with simulation and experimental results.</description><subject>Current distribution</subject><subject>Immune system</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>Paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors (&lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfets)</subject><subject>Semiconductor device modeling</subject><subject>Silicon carbide</subject><subject>surge current</subject><subject>Surges</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>third quadrant</subject><subject>Voltage</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpN0L1OwzAUhmELgUQpXAASg28gxcdOYntEofxIRS1KmCPbOQajkFZ2M3D3NGoHprOc5xteQm6BLQCYvm82y9WCM54vRK4KKdgZmYHOIWPA5DmZMaWKTGktLslVSt-MQV4wmJG6HuMn0mqMEYc9fQxpH4Md92E70DDQjYmm77HHjtahom_r-mnZJPoxdBhp8xVil72PpovmYNc7jGaC1-TCmz7hzenOSXNQ1Uu2Wj-_Vg-rzJUCMqdKAxIESN05zp1WgN6WGlBYrlTpbY6gCm7RFdZw6X0HjilrnceitE7MCRxnXdymFNG3uxh-TPxtgbVTlHaK0k5R2lOUg7k7moCI__6lEDIH8Qf-sV6-</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Zhang, Man</creator><creator>Li, Helong</creator><creator>Yang, Zhiqing</creator><creator>Zhao, Shuang</creator><creator>Wang, Xiongfei</creator><creator>Ding, Lijian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9494-7670</orcidid><orcidid>https://orcid.org/0000-0002-2259-9830</orcidid><orcidid>https://orcid.org/0000-0002-6327-9729</orcidid><orcidid>https://orcid.org/0000-0001-9251-9106</orcidid><orcidid>https://orcid.org/0000-0003-0098-0064</orcidid><orcidid>https://orcid.org/0009-0005-6759-1137</orcidid></search><sort><creationdate>202502</creationdate><title>Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation</title><author>Zhang, Man ; Li, Helong ; Yang, Zhiqing ; Zhao, Shuang ; Wang, Xiongfei ; Ding, Lijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Current distribution</topic><topic>Immune system</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>Paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors (&lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfets)</topic><topic>Semiconductor device modeling</topic><topic>Silicon carbide</topic><topic>surge current</topic><topic>Surges</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>third quadrant</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Man</creatorcontrib><creatorcontrib>Li, Helong</creatorcontrib><creatorcontrib>Yang, Zhiqing</creatorcontrib><creatorcontrib>Zhao, Shuang</creatorcontrib><creatorcontrib>Wang, Xiongfei</creatorcontrib><creatorcontrib>Ding, Lijian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Man</au><au>Li, Helong</au><au>Yang, Zhiqing</au><au>Zhao, Shuang</au><au>Wang, Xiongfei</au><au>Ding, Lijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2025-02</date><risdate>2025</risdate><volume>40</volume><issue>2</issue><spage>3077</spage><epage>3089</epage><pages>3077-3089</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs further investigations. This article, therefore, establishes a source-drain resistance model of SiC mosfet s under different gate bias in surge current range, which reveals the current "competition mechanism" between the MOS-channel path and the body diode path under surge current conditions. It then investigates the influence of device parameters discrepancy on surge current distribution in paralleled SiC mosfet s. It finds out that the discrepancy of body diode parameters has significant influences on surge current distribution under different gate biases, while the parameter discrepancy of MOS-channel has much smaller impact on surge current distribution, even with positive gate bias. The conclusions of this article are supported with simulation and experimental results.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3485730</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9494-7670</orcidid><orcidid>https://orcid.org/0000-0002-2259-9830</orcidid><orcidid>https://orcid.org/0000-0002-6327-9729</orcidid><orcidid>https://orcid.org/0000-0001-9251-9106</orcidid><orcidid>https://orcid.org/0000-0003-0098-0064</orcidid><orcidid>https://orcid.org/0009-0005-6759-1137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2025-02, Vol.40 (2), p.3077-3089
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2024_3485730
source IEEE Electronic Library (IEL) Journals
subjects Current distribution
Immune system
Logic gates
MOSFET
Paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors (<sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfets)
Semiconductor device modeling
Silicon carbide
surge current
Surges
Temperature
Temperature measurement
third quadrant
Voltage
title Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surge%20Current%20Distribution%20in%20Paralleled%20SiC%20MOSFETs%20Under%20Third-Quadrant%20Operation&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zhang,%20Man&rft.date=2025-02&rft.volume=40&rft.issue=2&rft.spage=3077&rft.epage=3089&rft.pages=3077-3089&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3485730&rft_dat=%3Ccrossref_ieee_%3E10_1109_TPEL_2024_3485730%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10733741&rfr_iscdi=true