Loading…
Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation
Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs...
Saved in:
Published in: | IEEE transactions on power electronics 2025-02, Vol.40 (2), p.3077-3089 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3 |
container_end_page | 3089 |
container_issue | 2 |
container_start_page | 3077 |
container_title | IEEE transactions on power electronics |
container_volume | 40 |
creator | Zhang, Man Li, Helong Yang, Zhiqing Zhao, Shuang Wang, Xiongfei Ding, Lijian |
description | Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs further investigations. This article, therefore, establishes a source-drain resistance model of SiC mosfet s under different gate bias in surge current range, which reveals the current "competition mechanism" between the MOS-channel path and the body diode path under surge current conditions. It then investigates the influence of device parameters discrepancy on surge current distribution in paralleled SiC mosfet s. It finds out that the discrepancy of body diode parameters has significant influences on surge current distribution under different gate biases, while the parameter discrepancy of MOS-channel has much smaller impact on surge current distribution, even with positive gate bias. The conclusions of this article are supported with simulation and experimental results. |
doi_str_mv | 10.1109/TPEL.2024.3485730 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2024_3485730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10733741</ieee_id><sourcerecordid>10_1109_TPEL_2024_3485730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3</originalsourceid><addsrcrecordid>eNpN0L1OwzAUhmELgUQpXAASg28gxcdOYntEofxIRS1KmCPbOQajkFZ2M3D3NGoHprOc5xteQm6BLQCYvm82y9WCM54vRK4KKdgZmYHOIWPA5DmZMaWKTGktLslVSt-MQV4wmJG6HuMn0mqMEYc9fQxpH4Md92E70DDQjYmm77HHjtahom_r-mnZJPoxdBhp8xVil72PpovmYNc7jGaC1-TCmz7hzenOSXNQ1Uu2Wj-_Vg-rzJUCMqdKAxIESN05zp1WgN6WGlBYrlTpbY6gCm7RFdZw6X0HjilrnceitE7MCRxnXdymFNG3uxh-TPxtgbVTlHaK0k5R2lOUg7k7moCI__6lEDIH8Qf-sV6-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Man ; Li, Helong ; Yang, Zhiqing ; Zhao, Shuang ; Wang, Xiongfei ; Ding, Lijian</creator><creatorcontrib>Zhang, Man ; Li, Helong ; Yang, Zhiqing ; Zhao, Shuang ; Wang, Xiongfei ; Ding, Lijian</creatorcontrib><description>Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs further investigations. This article, therefore, establishes a source-drain resistance model of SiC mosfet s under different gate bias in surge current range, which reveals the current "competition mechanism" between the MOS-channel path and the body diode path under surge current conditions. It then investigates the influence of device parameters discrepancy on surge current distribution in paralleled SiC mosfet s. It finds out that the discrepancy of body diode parameters has significant influences on surge current distribution under different gate biases, while the parameter discrepancy of MOS-channel has much smaller impact on surge current distribution, even with positive gate bias. The conclusions of this article are supported with simulation and experimental results.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3485730</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Current distribution ; Immune system ; Logic gates ; MOSFET ; Paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors (<sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfets) ; Semiconductor device modeling ; Silicon carbide ; surge current ; Surges ; Temperature ; Temperature measurement ; third quadrant ; Voltage</subject><ispartof>IEEE transactions on power electronics, 2025-02, Vol.40 (2), p.3077-3089</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3</cites><orcidid>0000-0002-9494-7670 ; 0000-0002-2259-9830 ; 0000-0002-6327-9729 ; 0000-0001-9251-9106 ; 0000-0003-0098-0064 ; 0009-0005-6759-1137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10733741$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Man</creatorcontrib><creatorcontrib>Li, Helong</creatorcontrib><creatorcontrib>Yang, Zhiqing</creatorcontrib><creatorcontrib>Zhao, Shuang</creatorcontrib><creatorcontrib>Wang, Xiongfei</creatorcontrib><creatorcontrib>Ding, Lijian</creatorcontrib><title>Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs further investigations. This article, therefore, establishes a source-drain resistance model of SiC mosfet s under different gate bias in surge current range, which reveals the current "competition mechanism" between the MOS-channel path and the body diode path under surge current conditions. It then investigates the influence of device parameters discrepancy on surge current distribution in paralleled SiC mosfet s. It finds out that the discrepancy of body diode parameters has significant influences on surge current distribution under different gate biases, while the parameter discrepancy of MOS-channel has much smaller impact on surge current distribution, even with positive gate bias. The conclusions of this article are supported with simulation and experimental results.</description><subject>Current distribution</subject><subject>Immune system</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>Paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors (<sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfets)</subject><subject>Semiconductor device modeling</subject><subject>Silicon carbide</subject><subject>surge current</subject><subject>Surges</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>third quadrant</subject><subject>Voltage</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpN0L1OwzAUhmELgUQpXAASg28gxcdOYntEofxIRS1KmCPbOQajkFZ2M3D3NGoHprOc5xteQm6BLQCYvm82y9WCM54vRK4KKdgZmYHOIWPA5DmZMaWKTGktLslVSt-MQV4wmJG6HuMn0mqMEYc9fQxpH4Md92E70DDQjYmm77HHjtahom_r-mnZJPoxdBhp8xVil72PpovmYNc7jGaC1-TCmz7hzenOSXNQ1Uu2Wj-_Vg-rzJUCMqdKAxIESN05zp1WgN6WGlBYrlTpbY6gCm7RFdZw6X0HjilrnceitE7MCRxnXdymFNG3uxh-TPxtgbVTlHaK0k5R2lOUg7k7moCI__6lEDIH8Qf-sV6-</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Zhang, Man</creator><creator>Li, Helong</creator><creator>Yang, Zhiqing</creator><creator>Zhao, Shuang</creator><creator>Wang, Xiongfei</creator><creator>Ding, Lijian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9494-7670</orcidid><orcidid>https://orcid.org/0000-0002-2259-9830</orcidid><orcidid>https://orcid.org/0000-0002-6327-9729</orcidid><orcidid>https://orcid.org/0000-0001-9251-9106</orcidid><orcidid>https://orcid.org/0000-0003-0098-0064</orcidid><orcidid>https://orcid.org/0009-0005-6759-1137</orcidid></search><sort><creationdate>202502</creationdate><title>Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation</title><author>Zhang, Man ; Li, Helong ; Yang, Zhiqing ; Zhao, Shuang ; Wang, Xiongfei ; Ding, Lijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Current distribution</topic><topic>Immune system</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>Paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors (<sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfets)</topic><topic>Semiconductor device modeling</topic><topic>Silicon carbide</topic><topic>surge current</topic><topic>Surges</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>third quadrant</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Man</creatorcontrib><creatorcontrib>Li, Helong</creatorcontrib><creatorcontrib>Yang, Zhiqing</creatorcontrib><creatorcontrib>Zhao, Shuang</creatorcontrib><creatorcontrib>Wang, Xiongfei</creatorcontrib><creatorcontrib>Ding, Lijian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Man</au><au>Li, Helong</au><au>Yang, Zhiqing</au><au>Zhao, Shuang</au><au>Wang, Xiongfei</au><au>Ding, Lijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2025-02</date><risdate>2025</risdate><volume>40</volume><issue>2</issue><spage>3077</spage><epage>3089</epage><pages>3077-3089</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Surge current capability of paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors ( mosfets) operating in both first and third quadrants is required in various applications. The surge current distribution in paralleled SiC mosfet s during third quadrant operation needs further investigations. This article, therefore, establishes a source-drain resistance model of SiC mosfet s under different gate bias in surge current range, which reveals the current "competition mechanism" between the MOS-channel path and the body diode path under surge current conditions. It then investigates the influence of device parameters discrepancy on surge current distribution in paralleled SiC mosfet s. It finds out that the discrepancy of body diode parameters has significant influences on surge current distribution under different gate biases, while the parameter discrepancy of MOS-channel has much smaller impact on surge current distribution, even with positive gate bias. The conclusions of this article are supported with simulation and experimental results.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3485730</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9494-7670</orcidid><orcidid>https://orcid.org/0000-0002-2259-9830</orcidid><orcidid>https://orcid.org/0000-0002-6327-9729</orcidid><orcidid>https://orcid.org/0000-0001-9251-9106</orcidid><orcidid>https://orcid.org/0000-0003-0098-0064</orcidid><orcidid>https://orcid.org/0009-0005-6759-1137</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2025-02, Vol.40 (2), p.3077-3089 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2024_3485730 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Current distribution Immune system Logic gates MOSFET Paralleled silicon carbide (SiC) metal-oxide-semiconductor-field-effect transistors (<sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfets) Semiconductor device modeling Silicon carbide surge current Surges Temperature Temperature measurement third quadrant Voltage |
title | Surge Current Distribution in Paralleled SiC MOSFETs Under Third-Quadrant Operation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surge%20Current%20Distribution%20in%20Paralleled%20SiC%20MOSFETs%20Under%20Third-Quadrant%20Operation&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zhang,%20Man&rft.date=2025-02&rft.volume=40&rft.issue=2&rft.spage=3077&rft.epage=3089&rft.pages=3077-3089&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3485730&rft_dat=%3Ccrossref_ieee_%3E10_1109_TPEL_2024_3485730%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c631-c86a1713179dc22c981efb691e3b2886fb4e1852bec5ba27ffd1c08bbcfe56bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10733741&rfr_iscdi=true |