Loading…

On Dimensions of Atmospheric-Pressure Hollow Cathodes

The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2007-06, Vol.35 (3), p.522-526
Main Authors: Soderstrom, D., Barankova, H., Bardos, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3
cites cdi_FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3
container_end_page 526
container_issue 3
container_start_page 522
container_title IEEE transactions on plasma science
container_volume 35
creator Soderstrom, D.
Barankova, H.
Bardos, L.
description The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create an HCE by adjusting the dimension of the hollow cathode. Experiments show that the dimensions could be as large as 500, so that the sheath thickness may be on the order of 100. Theoretical models of the atmospheric-pressure sheaths based on the conventional Child-Langmuir approach give the sheath thicknesses on the order of 10, which contradicts the experiments. We introduce here a new model which takes into account three groups of electrons: slow, fast, and secondary. By adding a group of fast and secondary electrons, we show that the sheath thickness increases as compared with only slow electrons present.
doi_str_mv 10.1109/TPS.2007.897894
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2007_897894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4237280</ieee_id><sourcerecordid>34499223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3</originalsourceid><addsrcrecordid>eNp9kc9LIzEUx4O4sLW75z14GQRFkKlJXmKSY2n9sSC0sOo1ZKYZjUwnNa-D-N-bMqLgYU_vkM977_PyJeQPoxPGqDm_W_6bcErVRBuljdgjI2bAlAaU3CcjSg2UoBn8JAeIz5QyISkfEbnoinlY-w5D7LCITTHdriNunnwKdblMHrFPvriJbRtfi5nbPsWVx1_kR-Na9L8_6pjcX13ezW7K28X139n0tqwF09tScl5JCq6pGkmlc6xeUQCXXbwBXYHKukZy4yopVsCbSgiarVTFG-qZqGFMzoa5-Oo3fWU3KaxderPRBTsPD1Mb06Pte2sUB5npk4HepPjSe9zadcDat63rfOzRghDGcA4ZPP0vyC4UEyB1_sAxOfqGPsc-dfloy4xkamecofMBqlNETL75FGXU7sKxORy7C8cO4eSO44-xDmvXNsl1dcCvNq2VGtYfDlzw3n8-Cw6KawrvL7-VGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195174405</pqid></control><display><type>article</type><title>On Dimensions of Atmospheric-Pressure Hollow Cathodes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Soderstrom, D. ; Barankova, H. ; Bardos, L.</creator><creatorcontrib>Soderstrom, D. ; Barankova, H. ; Bardos, L.</creatorcontrib><description>The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create an HCE by adjusting the dimension of the hollow cathode. Experiments show that the dimensions could be as large as 500, so that the sheath thickness may be on the order of 100. Theoretical models of the atmospheric-pressure sheaths based on the conventional Child-Langmuir approach give the sheath thicknesses on the order of 10, which contradicts the experiments. We introduce here a new model which takes into account three groups of electrons: slow, fast, and secondary. By adding a group of fast and secondary electrons, we show that the sheath thickness increases as compared with only slow electrons present.</description><identifier>ISSN: 0093-3813</identifier><identifier>ISSN: 1939-9375</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2007.897894</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Atmospheric modeling ; Atmospheric models ; Atmospheric pressure ; Atmospheric-pressure plasmas ; Barometric pressure ; Cathodes ; Electric discharges ; Electrodes ; Electrons ; Exact sciences and technology ; hollow cathode ; Hollow cathodes ; Ionization ; Oscillations ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma properties ; Plasma sheaths ; Plasma sources ; Radio frequency ; radio frequency (RF) ; Sheaths ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>IEEE transactions on plasma science, 2007-06, Vol.35 (3), p.522-526</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3</citedby><cites>FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4237280$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18877819$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-97235$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Soderstrom, D.</creatorcontrib><creatorcontrib>Barankova, H.</creatorcontrib><creatorcontrib>Bardos, L.</creatorcontrib><title>On Dimensions of Atmospheric-Pressure Hollow Cathodes</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create an HCE by adjusting the dimension of the hollow cathode. Experiments show that the dimensions could be as large as 500, so that the sheath thickness may be on the order of 100. Theoretical models of the atmospheric-pressure sheaths based on the conventional Child-Langmuir approach give the sheath thicknesses on the order of 10, which contradicts the experiments. We introduce here a new model which takes into account three groups of electrons: slow, fast, and secondary. By adding a group of fast and secondary electrons, we show that the sheath thickness increases as compared with only slow electrons present.</description><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>Atmospheric pressure</subject><subject>Atmospheric-pressure plasmas</subject><subject>Barometric pressure</subject><subject>Cathodes</subject><subject>Electric discharges</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>hollow cathode</subject><subject>Hollow cathodes</subject><subject>Ionization</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma properties</subject><subject>Plasma sheaths</subject><subject>Plasma sources</subject><subject>Radio frequency</subject><subject>radio frequency (RF)</subject><subject>Sheaths</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>0093-3813</issn><issn>1939-9375</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LIzEUx4O4sLW75z14GQRFkKlJXmKSY2n9sSC0sOo1ZKYZjUwnNa-D-N-bMqLgYU_vkM977_PyJeQPoxPGqDm_W_6bcErVRBuljdgjI2bAlAaU3CcjSg2UoBn8JAeIz5QyISkfEbnoinlY-w5D7LCITTHdriNunnwKdblMHrFPvriJbRtfi5nbPsWVx1_kR-Na9L8_6pjcX13ezW7K28X139n0tqwF09tScl5JCq6pGkmlc6xeUQCXXbwBXYHKukZy4yopVsCbSgiarVTFG-qZqGFMzoa5-Oo3fWU3KaxderPRBTsPD1Mb06Pte2sUB5npk4HepPjSe9zadcDat63rfOzRghDGcA4ZPP0vyC4UEyB1_sAxOfqGPsc-dfloy4xkamecofMBqlNETL75FGXU7sKxORy7C8cO4eSO44-xDmvXNsl1dcCvNq2VGtYfDlzw3n8-Cw6KawrvL7-VGQ</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Soderstrom, D.</creator><creator>Barankova, H.</creator><creator>Bardos, L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20070601</creationdate><title>On Dimensions of Atmospheric-Pressure Hollow Cathodes</title><author>Soderstrom, D. ; Barankova, H. ; Bardos, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>Atmospheric pressure</topic><topic>Atmospheric-pressure plasmas</topic><topic>Barometric pressure</topic><topic>Cathodes</topic><topic>Electric discharges</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>hollow cathode</topic><topic>Hollow cathodes</topic><topic>Ionization</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma properties</topic><topic>Plasma sheaths</topic><topic>Plasma sources</topic><topic>Radio frequency</topic><topic>radio frequency (RF)</topic><topic>Sheaths</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soderstrom, D.</creatorcontrib><creatorcontrib>Barankova, H.</creatorcontrib><creatorcontrib>Bardos, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soderstrom, D.</au><au>Barankova, H.</au><au>Bardos, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Dimensions of Atmospheric-Pressure Hollow Cathodes</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>35</volume><issue>3</issue><spage>522</spage><epage>526</epage><pages>522-526</pages><issn>0093-3813</issn><issn>1939-9375</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create an HCE by adjusting the dimension of the hollow cathode. Experiments show that the dimensions could be as large as 500, so that the sheath thickness may be on the order of 100. Theoretical models of the atmospheric-pressure sheaths based on the conventional Child-Langmuir approach give the sheath thicknesses on the order of 10, which contradicts the experiments. We introduce here a new model which takes into account three groups of electrons: slow, fast, and secondary. By adding a group of fast and secondary electrons, we show that the sheath thickness increases as compared with only slow electrons present.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2007.897894</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2007-06, Vol.35 (3), p.522-526
issn 0093-3813
1939-9375
1939-9375
language eng
recordid cdi_crossref_primary_10_1109_TPS_2007_897894
source IEEE Electronic Library (IEL) Journals
subjects Atmospheric modeling
Atmospheric models
Atmospheric pressure
Atmospheric-pressure plasmas
Barometric pressure
Cathodes
Electric discharges
Electrodes
Electrons
Exact sciences and technology
hollow cathode
Hollow cathodes
Ionization
Oscillations
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma
Plasma properties
Plasma sheaths
Plasma sources
Radio frequency
radio frequency (RF)
Sheaths
TECHNOLOGY
TEKNIKVETENSKAP
title On Dimensions of Atmospheric-Pressure Hollow Cathodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Dimensions%20of%20Atmospheric-Pressure%20Hollow%20Cathodes&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Soderstrom,%20D.&rft.date=2007-06-01&rft.volume=35&rft.issue=3&rft.spage=522&rft.epage=526&rft.pages=522-526&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2007.897894&rft_dat=%3Cproquest_cross%3E34499223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195174405&rft_id=info:pmid/&rft_ieee_id=4237280&rfr_iscdi=true