Loading…
On Dimensions of Atmospheric-Pressure Hollow Cathodes
The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create...
Saved in:
Published in: | IEEE transactions on plasma science 2007-06, Vol.35 (3), p.522-526 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3 |
container_end_page | 526 |
container_issue | 3 |
container_start_page | 522 |
container_title | IEEE transactions on plasma science |
container_volume | 35 |
creator | Soderstrom, D. Barankova, H. Bardos, L. |
description | The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create an HCE by adjusting the dimension of the hollow cathode. Experiments show that the dimensions could be as large as 500, so that the sheath thickness may be on the order of 100. Theoretical models of the atmospheric-pressure sheaths based on the conventional Child-Langmuir approach give the sheath thicknesses on the order of 10, which contradicts the experiments. We introduce here a new model which takes into account three groups of electrons: slow, fast, and secondary. By adding a group of fast and secondary electrons, we show that the sheath thickness increases as compared with only slow electrons present. |
doi_str_mv | 10.1109/TPS.2007.897894 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2007_897894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4237280</ieee_id><sourcerecordid>34499223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3</originalsourceid><addsrcrecordid>eNp9kc9LIzEUx4O4sLW75z14GQRFkKlJXmKSY2n9sSC0sOo1ZKYZjUwnNa-D-N-bMqLgYU_vkM977_PyJeQPoxPGqDm_W_6bcErVRBuljdgjI2bAlAaU3CcjSg2UoBn8JAeIz5QyISkfEbnoinlY-w5D7LCITTHdriNunnwKdblMHrFPvriJbRtfi5nbPsWVx1_kR-Na9L8_6pjcX13ezW7K28X139n0tqwF09tScl5JCq6pGkmlc6xeUQCXXbwBXYHKukZy4yopVsCbSgiarVTFG-qZqGFMzoa5-Oo3fWU3KaxderPRBTsPD1Mb06Pte2sUB5npk4HepPjSe9zadcDat63rfOzRghDGcA4ZPP0vyC4UEyB1_sAxOfqGPsc-dfloy4xkamecofMBqlNETL75FGXU7sKxORy7C8cO4eSO44-xDmvXNsl1dcCvNq2VGtYfDlzw3n8-Cw6KawrvL7-VGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195174405</pqid></control><display><type>article</type><title>On Dimensions of Atmospheric-Pressure Hollow Cathodes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Soderstrom, D. ; Barankova, H. ; Bardos, L.</creator><creatorcontrib>Soderstrom, D. ; Barankova, H. ; Bardos, L.</creatorcontrib><description>The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create an HCE by adjusting the dimension of the hollow cathode. Experiments show that the dimensions could be as large as 500, so that the sheath thickness may be on the order of 100. Theoretical models of the atmospheric-pressure sheaths based on the conventional Child-Langmuir approach give the sheath thicknesses on the order of 10, which contradicts the experiments. We introduce here a new model which takes into account three groups of electrons: slow, fast, and secondary. By adding a group of fast and secondary electrons, we show that the sheath thickness increases as compared with only slow electrons present.</description><identifier>ISSN: 0093-3813</identifier><identifier>ISSN: 1939-9375</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2007.897894</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Atmospheric modeling ; Atmospheric models ; Atmospheric pressure ; Atmospheric-pressure plasmas ; Barometric pressure ; Cathodes ; Electric discharges ; Electrodes ; Electrons ; Exact sciences and technology ; hollow cathode ; Hollow cathodes ; Ionization ; Oscillations ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma properties ; Plasma sheaths ; Plasma sources ; Radio frequency ; radio frequency (RF) ; Sheaths ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>IEEE transactions on plasma science, 2007-06, Vol.35 (3), p.522-526</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3</citedby><cites>FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4237280$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18877819$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-97235$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Soderstrom, D.</creatorcontrib><creatorcontrib>Barankova, H.</creatorcontrib><creatorcontrib>Bardos, L.</creatorcontrib><title>On Dimensions of Atmospheric-Pressure Hollow Cathodes</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create an HCE by adjusting the dimension of the hollow cathode. Experiments show that the dimensions could be as large as 500, so that the sheath thickness may be on the order of 100. Theoretical models of the atmospheric-pressure sheaths based on the conventional Child-Langmuir approach give the sheath thicknesses on the order of 10, which contradicts the experiments. We introduce here a new model which takes into account three groups of electrons: slow, fast, and secondary. By adding a group of fast and secondary electrons, we show that the sheath thickness increases as compared with only slow electrons present.</description><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>Atmospheric pressure</subject><subject>Atmospheric-pressure plasmas</subject><subject>Barometric pressure</subject><subject>Cathodes</subject><subject>Electric discharges</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>hollow cathode</subject><subject>Hollow cathodes</subject><subject>Ionization</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma properties</subject><subject>Plasma sheaths</subject><subject>Plasma sources</subject><subject>Radio frequency</subject><subject>radio frequency (RF)</subject><subject>Sheaths</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>0093-3813</issn><issn>1939-9375</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LIzEUx4O4sLW75z14GQRFkKlJXmKSY2n9sSC0sOo1ZKYZjUwnNa-D-N-bMqLgYU_vkM977_PyJeQPoxPGqDm_W_6bcErVRBuljdgjI2bAlAaU3CcjSg2UoBn8JAeIz5QyISkfEbnoinlY-w5D7LCITTHdriNunnwKdblMHrFPvriJbRtfi5nbPsWVx1_kR-Na9L8_6pjcX13ezW7K28X139n0tqwF09tScl5JCq6pGkmlc6xeUQCXXbwBXYHKukZy4yopVsCbSgiarVTFG-qZqGFMzoa5-Oo3fWU3KaxderPRBTsPD1Mb06Pte2sUB5npk4HepPjSe9zadcDat63rfOzRghDGcA4ZPP0vyC4UEyB1_sAxOfqGPsc-dfloy4xkamecofMBqlNETL75FGXU7sKxORy7C8cO4eSO44-xDmvXNsl1dcCvNq2VGtYfDlzw3n8-Cw6KawrvL7-VGQ</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Soderstrom, D.</creator><creator>Barankova, H.</creator><creator>Bardos, L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20070601</creationdate><title>On Dimensions of Atmospheric-Pressure Hollow Cathodes</title><author>Soderstrom, D. ; Barankova, H. ; Bardos, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>Atmospheric pressure</topic><topic>Atmospheric-pressure plasmas</topic><topic>Barometric pressure</topic><topic>Cathodes</topic><topic>Electric discharges</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>hollow cathode</topic><topic>Hollow cathodes</topic><topic>Ionization</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma properties</topic><topic>Plasma sheaths</topic><topic>Plasma sources</topic><topic>Radio frequency</topic><topic>radio frequency (RF)</topic><topic>Sheaths</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soderstrom, D.</creatorcontrib><creatorcontrib>Barankova, H.</creatorcontrib><creatorcontrib>Bardos, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soderstrom, D.</au><au>Barankova, H.</au><au>Bardos, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Dimensions of Atmospheric-Pressure Hollow Cathodes</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>35</volume><issue>3</issue><spage>522</spage><epage>526</epage><pages>522-526</pages><issn>0093-3813</issn><issn>1939-9375</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The hollow cathode is known as a source of high-density plasmas. This property is due to the hollow-cathode effect (HCE), which can be explained by the oscillations of fast electrons between repelling potentials of opposing space-charge sheaths. At atmospheric pressure, one should be able to create an HCE by adjusting the dimension of the hollow cathode. Experiments show that the dimensions could be as large as 500, so that the sheath thickness may be on the order of 100. Theoretical models of the atmospheric-pressure sheaths based on the conventional Child-Langmuir approach give the sheath thicknesses on the order of 10, which contradicts the experiments. We introduce here a new model which takes into account three groups of electrons: slow, fast, and secondary. By adding a group of fast and secondary electrons, we show that the sheath thickness increases as compared with only slow electrons present.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2007.897894</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2007-06, Vol.35 (3), p.522-526 |
issn | 0093-3813 1939-9375 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2007_897894 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Atmospheric modeling Atmospheric models Atmospheric pressure Atmospheric-pressure plasmas Barometric pressure Cathodes Electric discharges Electrodes Electrons Exact sciences and technology hollow cathode Hollow cathodes Ionization Oscillations Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasma properties Plasma sheaths Plasma sources Radio frequency radio frequency (RF) Sheaths TECHNOLOGY TEKNIKVETENSKAP |
title | On Dimensions of Atmospheric-Pressure Hollow Cathodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Dimensions%20of%20Atmospheric-Pressure%20Hollow%20Cathodes&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Soderstrom,%20D.&rft.date=2007-06-01&rft.volume=35&rft.issue=3&rft.spage=522&rft.epage=526&rft.pages=522-526&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2007.897894&rft_dat=%3Cproquest_cross%3E34499223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-522b503afbf505aa1cd033a009e938b370079529ab54d32fb4405027b2f0e14c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195174405&rft_id=info:pmid/&rft_ieee_id=4237280&rfr_iscdi=true |