Loading…
Production of 30-mm Wide DC-Driven Brush-Shaped Cold Plasmas and Simulation on Its Discharge Process
In this paper, cold atmospheric pressure brush-shaped plasmas are reported. The brush, which is driven by a direct current (dc) power supply, is capable of generating plasmas glow up to 30-mm wide with no gas flow supplement. The plasmas can be touched by bare hand without any feeling of electrical...
Saved in:
Published in: | IEEE transactions on plasma science 2013-06, Vol.41 (6), p.1658-1663 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, cold atmospheric pressure brush-shaped plasmas are reported. The brush, which is driven by a direct current (dc) power supply, is capable of generating plasmas glow up to 30-mm wide with no gas flow supplement. The plasmas can be touched by bare hand without any feeling of electrical shock or warmth. Current measurements show that the discharge in air appears periodically pulsed, while the discharge in argon actually presents either pulsed, except for their discharge mechanism placed at differently. For understanding this particular characteristic, a 2-D fluid model is developed with the use of Comsol Multiphysics software, under the condition of discharge in argon treated as an example. The simulation results are in good agreement with our discharge experiment in argon, which further indicate that the space charges trapped along the whole dielectric surface in air but only confined in the hole ahead the anode needle tip in argon may be responsible for the generation of the different pulsed discharges. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2013.2262005 |