Loading…
An SDBD Plasma-Catalytic System for On-Demand Air Purification
Surface-dielectric-barrier discharges (SDBDs) can be applied for a wide range of applications, such as ozone generation, surface treatments, and air-pollutants removal. An important advantage of the SDBD plasma is that relatively low high-voltage (HV) pulses (
Saved in:
Published in: | IEEE transactions on plasma science 2018-12, Vol.46 (12), p.4078-4090 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-511b248defd9441640015e63dd38363356b13c0be05851027ee30155a51f05823 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-511b248defd9441640015e63dd38363356b13c0be05851027ee30155a51f05823 |
container_end_page | 4090 |
container_issue | 12 |
container_start_page | 4078 |
container_title | IEEE transactions on plasma science |
container_volume | 46 |
creator | Pemen, A. J. M. Chirumamilla, V. R. Beckers, F. J. C. M. Hoeben, W. F. L. M. Huiskamp, T. |
description | Surface-dielectric-barrier discharges (SDBDs) can be applied for a wide range of applications, such as ozone generation, surface treatments, and air-pollutants removal. An important advantage of the SDBD plasma is that relatively low high-voltage (HV) pulses ( |
doi_str_mv | 10.1109/TPS.2018.2855402 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2018_2855402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8423439</ieee_id><sourcerecordid>2141124922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-511b248defd9441640015e63dd38363356b13c0be05851027ee30155a51f05823</originalsourceid><addsrcrecordid>eNo9kM9rAjEQhUNpodb2XuhloefYmUyyJpeC1f4CQUF7DnE3CxF31ybrwf--K0pPA8P33oOPsUeEESKYl_VyNRKAeiS0UhLEFRugIcMNjdU1GwAY4qSRbtldSlsAlArEgL1Ommw1e5tly51LteNT17ndsQtFtjqmztdZ1cZs0fCZr11TZpMQs-UhhioUrgttc89uKrdL_uFyh-zn4309_eLzxef3dDLnBWnouELcCKlLX5VGSsxlv698TmVJmnIilW-QCth4UFohiLH31BPKKaz6l6Ahez737mP7e_Cps9v2EJt-0gqUiEIacaLgTBWxTSn6yu5jqF08WgR7smR7S_ZkyV4s9ZGncyR47_9xLQVJMvQHbcVfOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2141124922</pqid></control><display><type>article</type><title>An SDBD Plasma-Catalytic System for On-Demand Air Purification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pemen, A. J. M. ; Chirumamilla, V. R. ; Beckers, F. J. C. M. ; Hoeben, W. F. L. M. ; Huiskamp, T.</creator><creatorcontrib>Pemen, A. J. M. ; Chirumamilla, V. R. ; Beckers, F. J. C. M. ; Hoeben, W. F. L. M. ; Huiskamp, T.</creatorcontrib><description><![CDATA[Surface-dielectric-barrier discharges (SDBDs) can be applied for a wide range of applications, such as ozone generation, surface treatments, and air-pollutants removal. An important advantage of the SDBD plasma is that relatively low high-voltage (HV) pulses (<10 kV) are needed to generate the plasma. They are effective in removing a wide range of pollutants. Despite their high energy efficiency, plasma decomposition generally results in the reaction by-products and the formation of ozone and nitrogen oxides. This drawback can be overcome by combining the SDBD plasma with catalysis. In this paper, a novel plasma-catalytic topology is proposed for the purpose of on-demand air purification. The main idea of the plasma-catalytic reactor is that both the plasma and the catalytic function are configured as planar structures which are positioned in parallel to each other. The plasma is generated along a planar dielectric structure. We use an SDBD for this purpose. Plates coated with the catalytic material are positioned in parallel to the SDBD plates. The air to be treated is flushed along the plates. There are no restrictions to the type or combination of catalysts used; the catalysts and their specifications can be chosen freely. We have developed a modular plasma-catalytic SDBD reactor to handle large flows, which can be scaled up and scaled down easily. To energize the plasma, an SDBD power modulator was developed. The modulator is able to generate a HV output pulse over an SDBD plasma load with a magnitude adjustable from 4.78 to 6.95 kV. The pulse rise time is about <inline-formula> <tex-math notation="LaTeX">1~\mu \text{s} </tex-math></inline-formula> and its ramp is about 6 kV/<inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>. The energy per pulse then ranges from 1.1 to 17.4 mJ. The output power can be adjusted up to 48 W at a repetition rate of 5.5 kHz. The maximum possible pulse repetition rate is 22 kHz, but it is limited to 5.5 kHz due to the limited current rating of the available dc power supply. The total energy efficiency of the power modulator is 68%. A single modulator unit can power up to two SDBD reactor plates of <inline-formula> <tex-math notation="LaTeX">100\times 150 </tex-math></inline-formula> mm size, having plasma at both sides of the plate. The operational efficiency of the developed SDBD catalytic reactor has been investigated by studying the removal of NO x and ethylene. The removal efficiency of NO x and ethylene is determined as a function of energy density and operational parameters, such as their initial concentrations and the gas flow rate.]]></description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2018.2855402</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activation ; Air pollution ; Air purification ; Byproducts ; Capacitance ; Catalysis ; Catalysts ; Decomposition reactions ; Discharges (electric) ; Electric power supplies ; Energy efficiency ; Ethylene ; ethylene removal ; Flow rates ; Flow velocity ; Flux density ; Gas flow ; High voltages ; Inductors ; Modulation ; Nitrogen oxides ; NO<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ₓ removal ; Oxides ; Ozone ; Photochemicals ; Planar structures ; Plasma ; plasma applications ; plasma catalysis ; Plasmas ; Plates (structural members) ; Pollutant removal ; Pollutants ; Power efficiency ; pulse power systems ; Pulse repetition rate ; Pulse transformers ; Reactors ; Repetition ; surface-dielectric-barrier discharge (SDBD) ; Topology</subject><ispartof>IEEE transactions on plasma science, 2018-12, Vol.46 (12), p.4078-4090</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-511b248defd9441640015e63dd38363356b13c0be05851027ee30155a51f05823</citedby><cites>FETCH-LOGICAL-c380t-511b248defd9441640015e63dd38363356b13c0be05851027ee30155a51f05823</cites><orcidid>0000-0002-8450-2600 ; 0000-0001-7550-2361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8423439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pemen, A. J. M.</creatorcontrib><creatorcontrib>Chirumamilla, V. R.</creatorcontrib><creatorcontrib>Beckers, F. J. C. M.</creatorcontrib><creatorcontrib>Hoeben, W. F. L. M.</creatorcontrib><creatorcontrib>Huiskamp, T.</creatorcontrib><title>An SDBD Plasma-Catalytic System for On-Demand Air Purification</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description><![CDATA[Surface-dielectric-barrier discharges (SDBDs) can be applied for a wide range of applications, such as ozone generation, surface treatments, and air-pollutants removal. An important advantage of the SDBD plasma is that relatively low high-voltage (HV) pulses (<10 kV) are needed to generate the plasma. They are effective in removing a wide range of pollutants. Despite their high energy efficiency, plasma decomposition generally results in the reaction by-products and the formation of ozone and nitrogen oxides. This drawback can be overcome by combining the SDBD plasma with catalysis. In this paper, a novel plasma-catalytic topology is proposed for the purpose of on-demand air purification. The main idea of the plasma-catalytic reactor is that both the plasma and the catalytic function are configured as planar structures which are positioned in parallel to each other. The plasma is generated along a planar dielectric structure. We use an SDBD for this purpose. Plates coated with the catalytic material are positioned in parallel to the SDBD plates. The air to be treated is flushed along the plates. There are no restrictions to the type or combination of catalysts used; the catalysts and their specifications can be chosen freely. We have developed a modular plasma-catalytic SDBD reactor to handle large flows, which can be scaled up and scaled down easily. To energize the plasma, an SDBD power modulator was developed. The modulator is able to generate a HV output pulse over an SDBD plasma load with a magnitude adjustable from 4.78 to 6.95 kV. The pulse rise time is about <inline-formula> <tex-math notation="LaTeX">1~\mu \text{s} </tex-math></inline-formula> and its ramp is about 6 kV/<inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>. The energy per pulse then ranges from 1.1 to 17.4 mJ. The output power can be adjusted up to 48 W at a repetition rate of 5.5 kHz. The maximum possible pulse repetition rate is 22 kHz, but it is limited to 5.5 kHz due to the limited current rating of the available dc power supply. The total energy efficiency of the power modulator is 68%. A single modulator unit can power up to two SDBD reactor plates of <inline-formula> <tex-math notation="LaTeX">100\times 150 </tex-math></inline-formula> mm size, having plasma at both sides of the plate. The operational efficiency of the developed SDBD catalytic reactor has been investigated by studying the removal of NO x and ethylene. The removal efficiency of NO x and ethylene is determined as a function of energy density and operational parameters, such as their initial concentrations and the gas flow rate.]]></description><subject>Activation</subject><subject>Air pollution</subject><subject>Air purification</subject><subject>Byproducts</subject><subject>Capacitance</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Decomposition reactions</subject><subject>Discharges (electric)</subject><subject>Electric power supplies</subject><subject>Energy efficiency</subject><subject>Ethylene</subject><subject>ethylene removal</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Flux density</subject><subject>Gas flow</subject><subject>High voltages</subject><subject>Inductors</subject><subject>Modulation</subject><subject>Nitrogen oxides</subject><subject>NO<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ₓ removal</subject><subject>Oxides</subject><subject>Ozone</subject><subject>Photochemicals</subject><subject>Planar structures</subject><subject>Plasma</subject><subject>plasma applications</subject><subject>plasma catalysis</subject><subject>Plasmas</subject><subject>Plates (structural members)</subject><subject>Pollutant removal</subject><subject>Pollutants</subject><subject>Power efficiency</subject><subject>pulse power systems</subject><subject>Pulse repetition rate</subject><subject>Pulse transformers</subject><subject>Reactors</subject><subject>Repetition</subject><subject>surface-dielectric-barrier discharge (SDBD)</subject><subject>Topology</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM9rAjEQhUNpodb2XuhloefYmUyyJpeC1f4CQUF7DnE3CxF31ybrwf--K0pPA8P33oOPsUeEESKYl_VyNRKAeiS0UhLEFRugIcMNjdU1GwAY4qSRbtldSlsAlArEgL1Ommw1e5tly51LteNT17ndsQtFtjqmztdZ1cZs0fCZr11TZpMQs-UhhioUrgttc89uKrdL_uFyh-zn4309_eLzxef3dDLnBWnouELcCKlLX5VGSsxlv698TmVJmnIilW-QCth4UFohiLH31BPKKaz6l6Ahez737mP7e_Cps9v2EJt-0gqUiEIacaLgTBWxTSn6yu5jqF08WgR7smR7S_ZkyV4s9ZGncyR47_9xLQVJMvQHbcVfOA</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Pemen, A. J. M.</creator><creator>Chirumamilla, V. R.</creator><creator>Beckers, F. J. C. M.</creator><creator>Hoeben, W. F. L. M.</creator><creator>Huiskamp, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8450-2600</orcidid><orcidid>https://orcid.org/0000-0001-7550-2361</orcidid></search><sort><creationdate>20181201</creationdate><title>An SDBD Plasma-Catalytic System for On-Demand Air Purification</title><author>Pemen, A. J. M. ; Chirumamilla, V. R. ; Beckers, F. J. C. M. ; Hoeben, W. F. L. M. ; Huiskamp, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-511b248defd9441640015e63dd38363356b13c0be05851027ee30155a51f05823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Air pollution</topic><topic>Air purification</topic><topic>Byproducts</topic><topic>Capacitance</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Decomposition reactions</topic><topic>Discharges (electric)</topic><topic>Electric power supplies</topic><topic>Energy efficiency</topic><topic>Ethylene</topic><topic>ethylene removal</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Flux density</topic><topic>Gas flow</topic><topic>High voltages</topic><topic>Inductors</topic><topic>Modulation</topic><topic>Nitrogen oxides</topic><topic>NO<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ₓ removal</topic><topic>Oxides</topic><topic>Ozone</topic><topic>Photochemicals</topic><topic>Planar structures</topic><topic>Plasma</topic><topic>plasma applications</topic><topic>plasma catalysis</topic><topic>Plasmas</topic><topic>Plates (structural members)</topic><topic>Pollutant removal</topic><topic>Pollutants</topic><topic>Power efficiency</topic><topic>pulse power systems</topic><topic>Pulse repetition rate</topic><topic>Pulse transformers</topic><topic>Reactors</topic><topic>Repetition</topic><topic>surface-dielectric-barrier discharge (SDBD)</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pemen, A. J. M.</creatorcontrib><creatorcontrib>Chirumamilla, V. R.</creatorcontrib><creatorcontrib>Beckers, F. J. C. M.</creatorcontrib><creatorcontrib>Hoeben, W. F. L. M.</creatorcontrib><creatorcontrib>Huiskamp, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pemen, A. J. M.</au><au>Chirumamilla, V. R.</au><au>Beckers, F. J. C. M.</au><au>Hoeben, W. F. L. M.</au><au>Huiskamp, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An SDBD Plasma-Catalytic System for On-Demand Air Purification</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>46</volume><issue>12</issue><spage>4078</spage><epage>4090</epage><pages>4078-4090</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract><![CDATA[Surface-dielectric-barrier discharges (SDBDs) can be applied for a wide range of applications, such as ozone generation, surface treatments, and air-pollutants removal. An important advantage of the SDBD plasma is that relatively low high-voltage (HV) pulses (<10 kV) are needed to generate the plasma. They are effective in removing a wide range of pollutants. Despite their high energy efficiency, plasma decomposition generally results in the reaction by-products and the formation of ozone and nitrogen oxides. This drawback can be overcome by combining the SDBD plasma with catalysis. In this paper, a novel plasma-catalytic topology is proposed for the purpose of on-demand air purification. The main idea of the plasma-catalytic reactor is that both the plasma and the catalytic function are configured as planar structures which are positioned in parallel to each other. The plasma is generated along a planar dielectric structure. We use an SDBD for this purpose. Plates coated with the catalytic material are positioned in parallel to the SDBD plates. The air to be treated is flushed along the plates. There are no restrictions to the type or combination of catalysts used; the catalysts and their specifications can be chosen freely. We have developed a modular plasma-catalytic SDBD reactor to handle large flows, which can be scaled up and scaled down easily. To energize the plasma, an SDBD power modulator was developed. The modulator is able to generate a HV output pulse over an SDBD plasma load with a magnitude adjustable from 4.78 to 6.95 kV. The pulse rise time is about <inline-formula> <tex-math notation="LaTeX">1~\mu \text{s} </tex-math></inline-formula> and its ramp is about 6 kV/<inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>. The energy per pulse then ranges from 1.1 to 17.4 mJ. The output power can be adjusted up to 48 W at a repetition rate of 5.5 kHz. The maximum possible pulse repetition rate is 22 kHz, but it is limited to 5.5 kHz due to the limited current rating of the available dc power supply. The total energy efficiency of the power modulator is 68%. A single modulator unit can power up to two SDBD reactor plates of <inline-formula> <tex-math notation="LaTeX">100\times 150 </tex-math></inline-formula> mm size, having plasma at both sides of the plate. The operational efficiency of the developed SDBD catalytic reactor has been investigated by studying the removal of NO x and ethylene. The removal efficiency of NO x and ethylene is determined as a function of energy density and operational parameters, such as their initial concentrations and the gas flow rate.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2018.2855402</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8450-2600</orcidid><orcidid>https://orcid.org/0000-0001-7550-2361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2018-12, Vol.46 (12), p.4078-4090 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2018_2855402 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Activation Air pollution Air purification Byproducts Capacitance Catalysis Catalysts Decomposition reactions Discharges (electric) Electric power supplies Energy efficiency Ethylene ethylene removal Flow rates Flow velocity Flux density Gas flow High voltages Inductors Modulation Nitrogen oxides NO<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ₓ removal Oxides Ozone Photochemicals Planar structures Plasma plasma applications plasma catalysis Plasmas Plates (structural members) Pollutant removal Pollutants Power efficiency pulse power systems Pulse repetition rate Pulse transformers Reactors Repetition surface-dielectric-barrier discharge (SDBD) Topology |
title | An SDBD Plasma-Catalytic System for On-Demand Air Purification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20SDBD%20Plasma-Catalytic%20System%20for%20On-Demand%20Air%20Purification&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Pemen,%20A.%20J.%20M.&rft.date=2018-12-01&rft.volume=46&rft.issue=12&rft.spage=4078&rft.epage=4090&rft.pages=4078-4090&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2018.2855402&rft_dat=%3Cproquest_cross%3E2141124922%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-511b248defd9441640015e63dd38363356b13c0be05851027ee30155a51f05823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2141124922&rft_id=info:pmid/&rft_ieee_id=8423439&rfr_iscdi=true |