Loading…
Melting Distribution of Armature in Electromagnetic Rail Launcher
This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an exper...
Saved in:
Published in: | IEEE transactions on plasma science 2023-01, Vol.51 (1), p.234-242 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3 |
container_end_page | 242 |
container_issue | 1 |
container_start_page | 234 |
container_title | IEEE transactions on plasma science |
container_volume | 51 |
creator | Chen, Lixue Xu, Xuan Wang, Zengji Xu, Jinghan You, Penghao Lan, Xinyu |
description | This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an experiment platform of EMRL that is capable of retrieving the launched armature is set up. Compared with the armature surface profiles obtained from the experiment, the simulation model describes the locations of deeper melting accurately but is not precise enough for the shallower melting. Through analyzing the evolution of the melting region, it is found that the deepest crater forms at the point where the armature begins to melt. Analysis of the heat sources shows that contact resistance heat and body heat are two critical factors in the process of armature melting. Despite the high power of the frictional heat, there is no melting in the region where it exists. It is proven that the proposed model can predict the melting performance of the armature. |
doi_str_mv | 10.1109/TPS.2022.3228875 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2022_3228875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10007659</ieee_id><sourcerecordid>2769391718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk55thvHHqtSPqQiEJTZctzn4ipNiu0M_HtSlYHpLue-p3sIuWYwYQz03ertY8KB84ngXKmqPCEjpoUutKjKUzIC0KIQiolzcpHSFoBNS-AjMnvBJod2Q-9DyjHUfQ5dSztPZ3Fncx-RhpYuGnQ5dju7aTEHR99taOjS9q37wnhJzrxtEl795Zh8PixW86di-fr4PJ8tC8c5z4XWzk_rmuNaKSmEktZ56bXw6KQUTCtdr6GyVjoPbn1ApeNTzbxVULPSijG5Pd7dx-67x5TNtutjO7w0vJLDVFYxNVBwpFzsUorozT6GnY0_hoE5iDKDKHMQZf5EDZWbYyUg4j8coJKlFr9Z3GSy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769391718</pqid></control><display><type>article</type><title>Melting Distribution of Armature in Electromagnetic Rail Launcher</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Lixue ; Xu, Xuan ; Wang, Zengji ; Xu, Jinghan ; You, Penghao ; Lan, Xinyu</creator><creatorcontrib>Chen, Lixue ; Xu, Xuan ; Wang, Zengji ; Xu, Jinghan ; You, Penghao ; Lan, Xinyu</creatorcontrib><description>This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an experiment platform of EMRL that is capable of retrieving the launched armature is set up. Compared with the armature surface profiles obtained from the experiment, the simulation model describes the locations of deeper melting accurately but is not precise enough for the shallower melting. Through analyzing the evolution of the melting region, it is found that the deepest crater forms at the point where the armature begins to melt. Analysis of the heat sources shows that contact resistance heat and body heat are two critical factors in the process of armature melting. Despite the high power of the frictional heat, there is no melting in the region where it exists. It is proven that the proposed model can predict the melting performance of the armature.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2022.3228875</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Armature ; Conductivity ; Contact melting ; Contact resistance ; Electromagnetic fields ; Electromagnetic rail launcher (EMRL) ; Electromagnetics ; heat source ; Heat sources ; Heat transfer ; Heating systems ; Launchers ; Melting ; multiphysics field coupling model ; Rails ; Resistance heating ; Simulation models</subject><ispartof>IEEE transactions on plasma science, 2023-01, Vol.51 (1), p.234-242</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3</citedby><cites>FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3</cites><orcidid>0000-0003-1747-597X ; 0000-0003-3121-9745 ; 0000-0003-4036-1241 ; 0000-0003-4110-9777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10007659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Chen, Lixue</creatorcontrib><creatorcontrib>Xu, Xuan</creatorcontrib><creatorcontrib>Wang, Zengji</creatorcontrib><creatorcontrib>Xu, Jinghan</creatorcontrib><creatorcontrib>You, Penghao</creatorcontrib><creatorcontrib>Lan, Xinyu</creatorcontrib><title>Melting Distribution of Armature in Electromagnetic Rail Launcher</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an experiment platform of EMRL that is capable of retrieving the launched armature is set up. Compared with the armature surface profiles obtained from the experiment, the simulation model describes the locations of deeper melting accurately but is not precise enough for the shallower melting. Through analyzing the evolution of the melting region, it is found that the deepest crater forms at the point where the armature begins to melt. Analysis of the heat sources shows that contact resistance heat and body heat are two critical factors in the process of armature melting. Despite the high power of the frictional heat, there is no melting in the region where it exists. It is proven that the proposed model can predict the melting performance of the armature.</description><subject>Armature</subject><subject>Conductivity</subject><subject>Contact melting</subject><subject>Contact resistance</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic rail launcher (EMRL)</subject><subject>Electromagnetics</subject><subject>heat source</subject><subject>Heat sources</subject><subject>Heat transfer</subject><subject>Heating systems</subject><subject>Launchers</subject><subject>Melting</subject><subject>multiphysics field coupling model</subject><subject>Rails</subject><subject>Resistance heating</subject><subject>Simulation models</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk55thvHHqtSPqQiEJTZctzn4ipNiu0M_HtSlYHpLue-p3sIuWYwYQz03ertY8KB84ngXKmqPCEjpoUutKjKUzIC0KIQiolzcpHSFoBNS-AjMnvBJod2Q-9DyjHUfQ5dSztPZ3Fncx-RhpYuGnQ5dju7aTEHR99taOjS9q37wnhJzrxtEl795Zh8PixW86di-fr4PJ8tC8c5z4XWzk_rmuNaKSmEktZ56bXw6KQUTCtdr6GyVjoPbn1ApeNTzbxVULPSijG5Pd7dx-67x5TNtutjO7w0vJLDVFYxNVBwpFzsUorozT6GnY0_hoE5iDKDKHMQZf5EDZWbYyUg4j8coJKlFr9Z3GSy</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Chen, Lixue</creator><creator>Xu, Xuan</creator><creator>Wang, Zengji</creator><creator>Xu, Jinghan</creator><creator>You, Penghao</creator><creator>Lan, Xinyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1747-597X</orcidid><orcidid>https://orcid.org/0000-0003-3121-9745</orcidid><orcidid>https://orcid.org/0000-0003-4036-1241</orcidid><orcidid>https://orcid.org/0000-0003-4110-9777</orcidid></search><sort><creationdate>202301</creationdate><title>Melting Distribution of Armature in Electromagnetic Rail Launcher</title><author>Chen, Lixue ; Xu, Xuan ; Wang, Zengji ; Xu, Jinghan ; You, Penghao ; Lan, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Armature</topic><topic>Conductivity</topic><topic>Contact melting</topic><topic>Contact resistance</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic rail launcher (EMRL)</topic><topic>Electromagnetics</topic><topic>heat source</topic><topic>Heat sources</topic><topic>Heat transfer</topic><topic>Heating systems</topic><topic>Launchers</topic><topic>Melting</topic><topic>multiphysics field coupling model</topic><topic>Rails</topic><topic>Resistance heating</topic><topic>Simulation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lixue</creatorcontrib><creatorcontrib>Xu, Xuan</creatorcontrib><creatorcontrib>Wang, Zengji</creatorcontrib><creatorcontrib>Xu, Jinghan</creatorcontrib><creatorcontrib>You, Penghao</creatorcontrib><creatorcontrib>Lan, Xinyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lixue</au><au>Xu, Xuan</au><au>Wang, Zengji</au><au>Xu, Jinghan</au><au>You, Penghao</au><au>Lan, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting Distribution of Armature in Electromagnetic Rail Launcher</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2023-01</date><risdate>2023</risdate><volume>51</volume><issue>1</issue><spage>234</spage><epage>242</epage><pages>234-242</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an experiment platform of EMRL that is capable of retrieving the launched armature is set up. Compared with the armature surface profiles obtained from the experiment, the simulation model describes the locations of deeper melting accurately but is not precise enough for the shallower melting. Through analyzing the evolution of the melting region, it is found that the deepest crater forms at the point where the armature begins to melt. Analysis of the heat sources shows that contact resistance heat and body heat are two critical factors in the process of armature melting. Despite the high power of the frictional heat, there is no melting in the region where it exists. It is proven that the proposed model can predict the melting performance of the armature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2022.3228875</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1747-597X</orcidid><orcidid>https://orcid.org/0000-0003-3121-9745</orcidid><orcidid>https://orcid.org/0000-0003-4036-1241</orcidid><orcidid>https://orcid.org/0000-0003-4110-9777</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2023-01, Vol.51 (1), p.234-242 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2022_3228875 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Armature Conductivity Contact melting Contact resistance Electromagnetic fields Electromagnetic rail launcher (EMRL) Electromagnetics heat source Heat sources Heat transfer Heating systems Launchers Melting multiphysics field coupling model Rails Resistance heating Simulation models |
title | Melting Distribution of Armature in Electromagnetic Rail Launcher |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20Distribution%20of%20Armature%20in%20Electromagnetic%20Rail%20Launcher&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Chen,%20Lixue&rft.date=2023-01&rft.volume=51&rft.issue=1&rft.spage=234&rft.epage=242&rft.pages=234-242&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2022.3228875&rft_dat=%3Cproquest_cross%3E2769391718%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2769391718&rft_id=info:pmid/&rft_ieee_id=10007659&rfr_iscdi=true |