Loading…

Melting Distribution of Armature in Electromagnetic Rail Launcher

This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an exper...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2023-01, Vol.51 (1), p.234-242
Main Authors: Chen, Lixue, Xu, Xuan, Wang, Zengji, Xu, Jinghan, You, Penghao, Lan, Xinyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3
cites cdi_FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3
container_end_page 242
container_issue 1
container_start_page 234
container_title IEEE transactions on plasma science
container_volume 51
creator Chen, Lixue
Xu, Xuan
Wang, Zengji
Xu, Jinghan
You, Penghao
Lan, Xinyu
description This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an experiment platform of EMRL that is capable of retrieving the launched armature is set up. Compared with the armature surface profiles obtained from the experiment, the simulation model describes the locations of deeper melting accurately but is not precise enough for the shallower melting. Through analyzing the evolution of the melting region, it is found that the deepest crater forms at the point where the armature begins to melt. Analysis of the heat sources shows that contact resistance heat and body heat are two critical factors in the process of armature melting. Despite the high power of the frictional heat, there is no melting in the region where it exists. It is proven that the proposed model can predict the melting performance of the armature.
doi_str_mv 10.1109/TPS.2022.3228875
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2022_3228875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10007659</ieee_id><sourcerecordid>2769391718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk55thvHHqtSPqQiEJTZctzn4ipNiu0M_HtSlYHpLue-p3sIuWYwYQz03ertY8KB84ngXKmqPCEjpoUutKjKUzIC0KIQiolzcpHSFoBNS-AjMnvBJod2Q-9DyjHUfQ5dSztPZ3Fncx-RhpYuGnQ5dju7aTEHR99taOjS9q37wnhJzrxtEl795Zh8PixW86di-fr4PJ8tC8c5z4XWzk_rmuNaKSmEktZ56bXw6KQUTCtdr6GyVjoPbn1ApeNTzbxVULPSijG5Pd7dx-67x5TNtutjO7w0vJLDVFYxNVBwpFzsUorozT6GnY0_hoE5iDKDKHMQZf5EDZWbYyUg4j8coJKlFr9Z3GSy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769391718</pqid></control><display><type>article</type><title>Melting Distribution of Armature in Electromagnetic Rail Launcher</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Lixue ; Xu, Xuan ; Wang, Zengji ; Xu, Jinghan ; You, Penghao ; Lan, Xinyu</creator><creatorcontrib>Chen, Lixue ; Xu, Xuan ; Wang, Zengji ; Xu, Jinghan ; You, Penghao ; Lan, Xinyu</creatorcontrib><description>This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an experiment platform of EMRL that is capable of retrieving the launched armature is set up. Compared with the armature surface profiles obtained from the experiment, the simulation model describes the locations of deeper melting accurately but is not precise enough for the shallower melting. Through analyzing the evolution of the melting region, it is found that the deepest crater forms at the point where the armature begins to melt. Analysis of the heat sources shows that contact resistance heat and body heat are two critical factors in the process of armature melting. Despite the high power of the frictional heat, there is no melting in the region where it exists. It is proven that the proposed model can predict the melting performance of the armature.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2022.3228875</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Armature ; Conductivity ; Contact melting ; Contact resistance ; Electromagnetic fields ; Electromagnetic rail launcher (EMRL) ; Electromagnetics ; heat source ; Heat sources ; Heat transfer ; Heating systems ; Launchers ; Melting ; multiphysics field coupling model ; Rails ; Resistance heating ; Simulation models</subject><ispartof>IEEE transactions on plasma science, 2023-01, Vol.51 (1), p.234-242</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3</citedby><cites>FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3</cites><orcidid>0000-0003-1747-597X ; 0000-0003-3121-9745 ; 0000-0003-4036-1241 ; 0000-0003-4110-9777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10007659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Chen, Lixue</creatorcontrib><creatorcontrib>Xu, Xuan</creatorcontrib><creatorcontrib>Wang, Zengji</creatorcontrib><creatorcontrib>Xu, Jinghan</creatorcontrib><creatorcontrib>You, Penghao</creatorcontrib><creatorcontrib>Lan, Xinyu</creatorcontrib><title>Melting Distribution of Armature in Electromagnetic Rail Launcher</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an experiment platform of EMRL that is capable of retrieving the launched armature is set up. Compared with the armature surface profiles obtained from the experiment, the simulation model describes the locations of deeper melting accurately but is not precise enough for the shallower melting. Through analyzing the evolution of the melting region, it is found that the deepest crater forms at the point where the armature begins to melt. Analysis of the heat sources shows that contact resistance heat and body heat are two critical factors in the process of armature melting. Despite the high power of the frictional heat, there is no melting in the region where it exists. It is proven that the proposed model can predict the melting performance of the armature.</description><subject>Armature</subject><subject>Conductivity</subject><subject>Contact melting</subject><subject>Contact resistance</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic rail launcher (EMRL)</subject><subject>Electromagnetics</subject><subject>heat source</subject><subject>Heat sources</subject><subject>Heat transfer</subject><subject>Heating systems</subject><subject>Launchers</subject><subject>Melting</subject><subject>multiphysics field coupling model</subject><subject>Rails</subject><subject>Resistance heating</subject><subject>Simulation models</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk55thvHHqtSPqQiEJTZctzn4ipNiu0M_HtSlYHpLue-p3sIuWYwYQz03ertY8KB84ngXKmqPCEjpoUutKjKUzIC0KIQiolzcpHSFoBNS-AjMnvBJod2Q-9DyjHUfQ5dSztPZ3Fncx-RhpYuGnQ5dju7aTEHR99taOjS9q37wnhJzrxtEl795Zh8PixW86di-fr4PJ8tC8c5z4XWzk_rmuNaKSmEktZ56bXw6KQUTCtdr6GyVjoPbn1ApeNTzbxVULPSijG5Pd7dx-67x5TNtutjO7w0vJLDVFYxNVBwpFzsUorozT6GnY0_hoE5iDKDKHMQZf5EDZWbYyUg4j8coJKlFr9Z3GSy</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Chen, Lixue</creator><creator>Xu, Xuan</creator><creator>Wang, Zengji</creator><creator>Xu, Jinghan</creator><creator>You, Penghao</creator><creator>Lan, Xinyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1747-597X</orcidid><orcidid>https://orcid.org/0000-0003-3121-9745</orcidid><orcidid>https://orcid.org/0000-0003-4036-1241</orcidid><orcidid>https://orcid.org/0000-0003-4110-9777</orcidid></search><sort><creationdate>202301</creationdate><title>Melting Distribution of Armature in Electromagnetic Rail Launcher</title><author>Chen, Lixue ; Xu, Xuan ; Wang, Zengji ; Xu, Jinghan ; You, Penghao ; Lan, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Armature</topic><topic>Conductivity</topic><topic>Contact melting</topic><topic>Contact resistance</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic rail launcher (EMRL)</topic><topic>Electromagnetics</topic><topic>heat source</topic><topic>Heat sources</topic><topic>Heat transfer</topic><topic>Heating systems</topic><topic>Launchers</topic><topic>Melting</topic><topic>multiphysics field coupling model</topic><topic>Rails</topic><topic>Resistance heating</topic><topic>Simulation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lixue</creatorcontrib><creatorcontrib>Xu, Xuan</creatorcontrib><creatorcontrib>Wang, Zengji</creatorcontrib><creatorcontrib>Xu, Jinghan</creatorcontrib><creatorcontrib>You, Penghao</creatorcontrib><creatorcontrib>Lan, Xinyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lixue</au><au>Xu, Xuan</au><au>Wang, Zengji</au><au>Xu, Jinghan</au><au>You, Penghao</au><au>Lan, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting Distribution of Armature in Electromagnetic Rail Launcher</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2023-01</date><risdate>2023</risdate><volume>51</volume><issue>1</issue><spage>234</spage><epage>242</epage><pages>234-242</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>This article established a 3-D transient melting calculation model of the electromagnetic rail launcher (EMRL), considering the combined effects of electromagnetic fields, structural fields, heat transfer, and armature motion. To verify the accuracy of the multiphysics field coupling model, an experiment platform of EMRL that is capable of retrieving the launched armature is set up. Compared with the armature surface profiles obtained from the experiment, the simulation model describes the locations of deeper melting accurately but is not precise enough for the shallower melting. Through analyzing the evolution of the melting region, it is found that the deepest crater forms at the point where the armature begins to melt. Analysis of the heat sources shows that contact resistance heat and body heat are two critical factors in the process of armature melting. Despite the high power of the frictional heat, there is no melting in the region where it exists. It is proven that the proposed model can predict the melting performance of the armature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2022.3228875</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1747-597X</orcidid><orcidid>https://orcid.org/0000-0003-3121-9745</orcidid><orcidid>https://orcid.org/0000-0003-4036-1241</orcidid><orcidid>https://orcid.org/0000-0003-4110-9777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2023-01, Vol.51 (1), p.234-242
issn 0093-3813
1939-9375
language eng
recordid cdi_crossref_primary_10_1109_TPS_2022_3228875
source IEEE Electronic Library (IEL) Journals
subjects Armature
Conductivity
Contact melting
Contact resistance
Electromagnetic fields
Electromagnetic rail launcher (EMRL)
Electromagnetics
heat source
Heat sources
Heat transfer
Heating systems
Launchers
Melting
multiphysics field coupling model
Rails
Resistance heating
Simulation models
title Melting Distribution of Armature in Electromagnetic Rail Launcher
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20Distribution%20of%20Armature%20in%20Electromagnetic%20Rail%20Launcher&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Chen,%20Lixue&rft.date=2023-01&rft.volume=51&rft.issue=1&rft.spage=234&rft.epage=242&rft.pages=234-242&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2022.3228875&rft_dat=%3Cproquest_cross%3E2769391718%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-99cf4bb2ed8863386acf6f93fec6631989bd07aa6cf0cdf4bb6c2491fa80b15a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2769391718&rft_id=info:pmid/&rft_ieee_id=10007659&rfr_iscdi=true