Loading…

Transformer thermal modeling: improving reliability using data quality control

Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2006-07, Vol.21 (3), p.1357-1366
Main Authors: Tylavsky, D.J., Xiaolin Mao, McCulla, G.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3
cites cdi_FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3
container_end_page 1366
container_issue 3
container_start_page 1357
container_title IEEE transactions on power delivery
container_volume 21
creator Tylavsky, D.J.
Xiaolin Mao
McCulla, G.A.
description Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The only significant challenge to use these models is to assess their reliability and improve their reliability as much as possible. In this work, we use data-quality control and data-set screening to show that model reliability can be increased by about 50% while decreasing model prediction error. These results are obtained for a linear model. We expect similar results for the nonlinear models currently being explored.
doi_str_mv 10.1109/TPWRD.2005.864039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRD_2005_864039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1645176</ieee_id><sourcerecordid>2346493021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3</originalsourceid><addsrcrecordid>eNpdkNtKw0AQhhdRsFYfQLwJgniVuqfswTupRygqUvFy2Ww2mrJJ2t1E6Nu7bQoFr2b455th-AA4R3CCEJQ38_evj_sJhjCbCEYhkQdghCThKcVQHIIRFCJLheT8GJyEsIAQUijhCLzOvW5C2fra-qT7sb7WLqnbwrqq-b5Nqnrp29_YJj4mOq9c1a2TPmySQnc6WfV6G5m26XzrTsFRqV2wZ7s6Bp-PD_Ppczp7e3qZ3s1SQzLapVhQmAlpC2NQQa2FGSuxLJlkpCyptCbTFHHKGJVG54aaPKc8y6EmQhtuCjIG18Pd-N6qt6FTdRWMdU43tu2DEpJhTBBmkbz8Ry7a3jfxOSUYI4JILiKEBsj4NgRvS7X0Va39WiGoNn7V1q_a-FWD37hztTusg9GujB5NFfaLXBKGBY7cxcBV1tr9mNEMcUb-ALCyhQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866383978</pqid></control><display><type>article</type><title>Transformer thermal modeling: improving reliability using data quality control</title><source>IEEE Xplore (Online service)</source><creator>Tylavsky, D.J. ; Xiaolin Mao ; McCulla, G.A.</creator><creatorcontrib>Tylavsky, D.J. ; Xiaolin Mao ; McCulla, G.A.</creatorcontrib><description>Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The only significant challenge to use these models is to assess their reliability and improve their reliability as much as possible. In this work, we use data-quality control and data-set screening to show that model reliability can be increased by about 50% while decreasing model prediction error. These results are obtained for a linear model. We expect similar results for the nonlinear models currently being explored.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2005.864039</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>ANSI C57.91 ; Applied sciences ; Cooling ; Electrical engineering. Electrical power engineering ; Error correction ; Errors ; Exact sciences and technology ; Heat transfer ; Load modeling ; Mathematical models ; Monitoring ; Nonlinearity ; Predictive models ; Quality control ; Screening ; Temperature measurement ; Testing ; Thermal loading ; top-oil temperature ; transformer ; transformer thermal modeling ; Transformers ; Transformers and inductors</subject><ispartof>IEEE transactions on power delivery, 2006-07, Vol.21 (3), p.1357-1366</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3</citedby><cites>FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1645176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17936282$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tylavsky, D.J.</creatorcontrib><creatorcontrib>Xiaolin Mao</creatorcontrib><creatorcontrib>McCulla, G.A.</creatorcontrib><title>Transformer thermal modeling: improving reliability using data quality control</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The only significant challenge to use these models is to assess their reliability and improve their reliability as much as possible. In this work, we use data-quality control and data-set screening to show that model reliability can be increased by about 50% while decreasing model prediction error. These results are obtained for a linear model. We expect similar results for the nonlinear models currently being explored.</description><subject>ANSI C57.91</subject><subject>Applied sciences</subject><subject>Cooling</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Error correction</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Nonlinearity</subject><subject>Predictive models</subject><subject>Quality control</subject><subject>Screening</subject><subject>Temperature measurement</subject><subject>Testing</subject><subject>Thermal loading</subject><subject>top-oil temperature</subject><subject>transformer</subject><subject>transformer thermal modeling</subject><subject>Transformers</subject><subject>Transformers and inductors</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkNtKw0AQhhdRsFYfQLwJgniVuqfswTupRygqUvFy2Ww2mrJJ2t1E6Nu7bQoFr2b455th-AA4R3CCEJQ38_evj_sJhjCbCEYhkQdghCThKcVQHIIRFCJLheT8GJyEsIAQUijhCLzOvW5C2fra-qT7sb7WLqnbwrqq-b5Nqnrp29_YJj4mOq9c1a2TPmySQnc6WfV6G5m26XzrTsFRqV2wZ7s6Bp-PD_Ppczp7e3qZ3s1SQzLapVhQmAlpC2NQQa2FGSuxLJlkpCyptCbTFHHKGJVG54aaPKc8y6EmQhtuCjIG18Pd-N6qt6FTdRWMdU43tu2DEpJhTBBmkbz8Ry7a3jfxOSUYI4JILiKEBsj4NgRvS7X0Va39WiGoNn7V1q_a-FWD37hztTusg9GujB5NFfaLXBKGBY7cxcBV1tr9mNEMcUb-ALCyhQM</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Tylavsky, D.J.</creator><creator>Xiaolin Mao</creator><creator>McCulla, G.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20060701</creationdate><title>Transformer thermal modeling: improving reliability using data quality control</title><author>Tylavsky, D.J. ; Xiaolin Mao ; McCulla, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ANSI C57.91</topic><topic>Applied sciences</topic><topic>Cooling</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Error correction</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Nonlinearity</topic><topic>Predictive models</topic><topic>Quality control</topic><topic>Screening</topic><topic>Temperature measurement</topic><topic>Testing</topic><topic>Thermal loading</topic><topic>top-oil temperature</topic><topic>transformer</topic><topic>transformer thermal modeling</topic><topic>Transformers</topic><topic>Transformers and inductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tylavsky, D.J.</creatorcontrib><creatorcontrib>Xiaolin Mao</creatorcontrib><creatorcontrib>McCulla, G.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tylavsky, D.J.</au><au>Xiaolin Mao</au><au>McCulla, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformer thermal modeling: improving reliability using data quality control</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2006-07-01</date><risdate>2006</risdate><volume>21</volume><issue>3</issue><spage>1357</spage><epage>1366</epage><pages>1357-1366</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The only significant challenge to use these models is to assess their reliability and improve their reliability as much as possible. In this work, we use data-quality control and data-set screening to show that model reliability can be increased by about 50% while decreasing model prediction error. These results are obtained for a linear model. We expect similar results for the nonlinear models currently being explored.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2005.864039</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2006-07, Vol.21 (3), p.1357-1366
issn 0885-8977
1937-4208
language eng
recordid cdi_crossref_primary_10_1109_TPWRD_2005_864039
source IEEE Xplore (Online service)
subjects ANSI C57.91
Applied sciences
Cooling
Electrical engineering. Electrical power engineering
Error correction
Errors
Exact sciences and technology
Heat transfer
Load modeling
Mathematical models
Monitoring
Nonlinearity
Predictive models
Quality control
Screening
Temperature measurement
Testing
Thermal loading
top-oil temperature
transformer
transformer thermal modeling
Transformers
Transformers and inductors
title Transformer thermal modeling: improving reliability using data quality control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformer%20thermal%20modeling:%20improving%20reliability%20using%20data%20quality%20control&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Tylavsky,%20D.J.&rft.date=2006-07-01&rft.volume=21&rft.issue=3&rft.spage=1357&rft.epage=1366&rft.pages=1357-1366&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2005.864039&rft_dat=%3Cproquest_cross%3E2346493021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866383978&rft_id=info:pmid/&rft_ieee_id=1645176&rfr_iscdi=true