Loading…
Transformer thermal modeling: improving reliability using data quality control
Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The...
Saved in:
Published in: | IEEE transactions on power delivery 2006-07, Vol.21 (3), p.1357-1366 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3 |
container_end_page | 1366 |
container_issue | 3 |
container_start_page | 1357 |
container_title | IEEE transactions on power delivery |
container_volume | 21 |
creator | Tylavsky, D.J. Xiaolin Mao McCulla, G.A. |
description | Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The only significant challenge to use these models is to assess their reliability and improve their reliability as much as possible. In this work, we use data-quality control and data-set screening to show that model reliability can be increased by about 50% while decreasing model prediction error. These results are obtained for a linear model. We expect similar results for the nonlinear models currently being explored. |
doi_str_mv | 10.1109/TPWRD.2005.864039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRD_2005_864039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1645176</ieee_id><sourcerecordid>2346493021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3</originalsourceid><addsrcrecordid>eNpdkNtKw0AQhhdRsFYfQLwJgniVuqfswTupRygqUvFy2Ww2mrJJ2t1E6Nu7bQoFr2b455th-AA4R3CCEJQ38_evj_sJhjCbCEYhkQdghCThKcVQHIIRFCJLheT8GJyEsIAQUijhCLzOvW5C2fra-qT7sb7WLqnbwrqq-b5Nqnrp29_YJj4mOq9c1a2TPmySQnc6WfV6G5m26XzrTsFRqV2wZ7s6Bp-PD_Ppczp7e3qZ3s1SQzLapVhQmAlpC2NQQa2FGSuxLJlkpCyptCbTFHHKGJVG54aaPKc8y6EmQhtuCjIG18Pd-N6qt6FTdRWMdU43tu2DEpJhTBBmkbz8Ry7a3jfxOSUYI4JILiKEBsj4NgRvS7X0Va39WiGoNn7V1q_a-FWD37hztTusg9GujB5NFfaLXBKGBY7cxcBV1tr9mNEMcUb-ALCyhQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866383978</pqid></control><display><type>article</type><title>Transformer thermal modeling: improving reliability using data quality control</title><source>IEEE Xplore (Online service)</source><creator>Tylavsky, D.J. ; Xiaolin Mao ; McCulla, G.A.</creator><creatorcontrib>Tylavsky, D.J. ; Xiaolin Mao ; McCulla, G.A.</creatorcontrib><description>Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The only significant challenge to use these models is to assess their reliability and improve their reliability as much as possible. In this work, we use data-quality control and data-set screening to show that model reliability can be increased by about 50% while decreasing model prediction error. These results are obtained for a linear model. We expect similar results for the nonlinear models currently being explored.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2005.864039</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>ANSI C57.91 ; Applied sciences ; Cooling ; Electrical engineering. Electrical power engineering ; Error correction ; Errors ; Exact sciences and technology ; Heat transfer ; Load modeling ; Mathematical models ; Monitoring ; Nonlinearity ; Predictive models ; Quality control ; Screening ; Temperature measurement ; Testing ; Thermal loading ; top-oil temperature ; transformer ; transformer thermal modeling ; Transformers ; Transformers and inductors</subject><ispartof>IEEE transactions on power delivery, 2006-07, Vol.21 (3), p.1357-1366</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3</citedby><cites>FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1645176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17936282$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tylavsky, D.J.</creatorcontrib><creatorcontrib>Xiaolin Mao</creatorcontrib><creatorcontrib>McCulla, G.A.</creatorcontrib><title>Transformer thermal modeling: improving reliability using data quality control</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The only significant challenge to use these models is to assess their reliability and improve their reliability as much as possible. In this work, we use data-quality control and data-set screening to show that model reliability can be increased by about 50% while decreasing model prediction error. These results are obtained for a linear model. We expect similar results for the nonlinear models currently being explored.</description><subject>ANSI C57.91</subject><subject>Applied sciences</subject><subject>Cooling</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Error correction</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Nonlinearity</subject><subject>Predictive models</subject><subject>Quality control</subject><subject>Screening</subject><subject>Temperature measurement</subject><subject>Testing</subject><subject>Thermal loading</subject><subject>top-oil temperature</subject><subject>transformer</subject><subject>transformer thermal modeling</subject><subject>Transformers</subject><subject>Transformers and inductors</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkNtKw0AQhhdRsFYfQLwJgniVuqfswTupRygqUvFy2Ww2mrJJ2t1E6Nu7bQoFr2b455th-AA4R3CCEJQ38_evj_sJhjCbCEYhkQdghCThKcVQHIIRFCJLheT8GJyEsIAQUijhCLzOvW5C2fra-qT7sb7WLqnbwrqq-b5Nqnrp29_YJj4mOq9c1a2TPmySQnc6WfV6G5m26XzrTsFRqV2wZ7s6Bp-PD_Ppczp7e3qZ3s1SQzLapVhQmAlpC2NQQa2FGSuxLJlkpCyptCbTFHHKGJVG54aaPKc8y6EmQhtuCjIG18Pd-N6qt6FTdRWMdU43tu2DEpJhTBBmkbz8Ry7a3jfxOSUYI4JILiKEBsj4NgRvS7X0Va39WiGoNn7V1q_a-FWD37hztTusg9GujB5NFfaLXBKGBY7cxcBV1tr9mNEMcUb-ALCyhQM</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Tylavsky, D.J.</creator><creator>Xiaolin Mao</creator><creator>McCulla, G.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20060701</creationdate><title>Transformer thermal modeling: improving reliability using data quality control</title><author>Tylavsky, D.J. ; Xiaolin Mao ; McCulla, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ANSI C57.91</topic><topic>Applied sciences</topic><topic>Cooling</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Error correction</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Nonlinearity</topic><topic>Predictive models</topic><topic>Quality control</topic><topic>Screening</topic><topic>Temperature measurement</topic><topic>Testing</topic><topic>Thermal loading</topic><topic>top-oil temperature</topic><topic>transformer</topic><topic>transformer thermal modeling</topic><topic>Transformers</topic><topic>Transformers and inductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tylavsky, D.J.</creatorcontrib><creatorcontrib>Xiaolin Mao</creatorcontrib><creatorcontrib>McCulla, G.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tylavsky, D.J.</au><au>Xiaolin Mao</au><au>McCulla, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformer thermal modeling: improving reliability using data quality control</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2006-07-01</date><risdate>2006</risdate><volume>21</volume><issue>3</issue><spage>1357</spage><epage>1366</epage><pages>1357-1366</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Eventually, all large transformers will be dynamically loaded using models updated regularly from field-measured data. Models obtained from measured data give more accurate results than models based on transformer heat-run tests and can be easily generated using data already routinely monitored. The only significant challenge to use these models is to assess their reliability and improve their reliability as much as possible. In this work, we use data-quality control and data-set screening to show that model reliability can be increased by about 50% while decreasing model prediction error. These results are obtained for a linear model. We expect similar results for the nonlinear models currently being explored.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2005.864039</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2006-07, Vol.21 (3), p.1357-1366 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRD_2005_864039 |
source | IEEE Xplore (Online service) |
subjects | ANSI C57.91 Applied sciences Cooling Electrical engineering. Electrical power engineering Error correction Errors Exact sciences and technology Heat transfer Load modeling Mathematical models Monitoring Nonlinearity Predictive models Quality control Screening Temperature measurement Testing Thermal loading top-oil temperature transformer transformer thermal modeling Transformers Transformers and inductors |
title | Transformer thermal modeling: improving reliability using data quality control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformer%20thermal%20modeling:%20improving%20reliability%20using%20data%20quality%20control&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Tylavsky,%20D.J.&rft.date=2006-07-01&rft.volume=21&rft.issue=3&rft.spage=1357&rft.epage=1366&rft.pages=1357-1366&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2005.864039&rft_dat=%3Cproquest_cross%3E2346493021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-2840589edcc1d4ee056f29f6963ff49ec5a41746649cabc4cbb475b0a38ac7cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866383978&rft_id=info:pmid/&rft_ieee_id=1645176&rfr_iscdi=true |