Loading…
Comparisons among clustering techniques for electricity customer classification
The recent evolution of the electricity business regulation has given new possibilities to the electricity providers for formulating dedicated tariff offers. A key aspect for building specific tariff structures is the identification of the consumption patterns of the customers, in order to form spec...
Saved in:
Published in: | IEEE transactions on power systems 2006-05, Vol.21 (2), p.933-940 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-b0751afdc7b90d55f762a2630e521221881c378f07c0dd65e21084b1a1cfea723 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-b0751afdc7b90d55f762a2630e521221881c378f07c0dd65e21084b1a1cfea723 |
container_end_page | 940 |
container_issue | 2 |
container_start_page | 933 |
container_title | IEEE transactions on power systems |
container_volume | 21 |
creator | Chicco, G. Napoli, R. Piglione, F. |
description | The recent evolution of the electricity business regulation has given new possibilities to the electricity providers for formulating dedicated tariff offers. A key aspect for building specific tariff structures is the identification of the consumption patterns of the customers, in order to form specific customer classes containing customers exhibiting similar patterns. This paper illustrates and compares the results obtained by using various unsupervised clustering algorithms (modified follow-the-leader, hierarchical clustering, K-means, fuzzy K-means) and the self-organizing maps to group together customers with similar electrical behavior. Furthermore, this paper discusses and compares various techniques-Sammon map, principal component analysis (PCA), and curvilinear component analysis (CCA)-able to reduce the size of the clustering input data set, in order to allow for storing a relatively small amount of data in the database of the distribution service provider for customer classification purposes. The effectiveness of the classifications obtained with the algorithms tested is compared in terms of a set of clustering validity indicators. Results obtained on a set of nonresidential customers are presented. |
doi_str_mv | 10.1109/TPWRS.2006.873122 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2006_873122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1626400</ieee_id><sourcerecordid>896207827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b0751afdc7b90d55f762a2630e521221881c378f07c0dd65e21084b1a1cfea723</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgCq6rP0C8FA966jpJm48eZfELhBVd8RiyaaJZ2mZN2sP-e1NXEDx4ykCeGWZ4ETrFMMMYqqvl09vzy4wAsJngBSZkD00wpSIHxqt9NAEhaC4qCofoKMY1JJg-Jmgx9-1GBRd9FzPV-u49080QexNcKnujPzr3OZiYWR8y0xjdB6ddv810Qr41IXEVo7NOq9757hgdWNVEc_LzTtHr7c1yfp8_Lu4e5tePuS5Z1ecr4BQrW2u-qqCm1HJGFGEFGErS8lgIrAsuLHANdc2oIRhEucIKa2sUJ8UUXe7mboIf9-tl66I2TaM644coRcUIcEF4khf_SsIrwUhJEzz_A9d-CF26QgpGRcGBjAjvkA4-xmCs3ATXqrCVGOSYhPxOQo5JyF0Sqeds1-OMMb-eEVYCFF8KkIV3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865837025</pqid></control><display><type>article</type><title>Comparisons among clustering techniques for electricity customer classification</title><source>IEEE Xplore (Online service)</source><creator>Chicco, G. ; Napoli, R. ; Piglione, F.</creator><creatorcontrib>Chicco, G. ; Napoli, R. ; Piglione, F.</creatorcontrib><description>The recent evolution of the electricity business regulation has given new possibilities to the electricity providers for formulating dedicated tariff offers. A key aspect for building specific tariff structures is the identification of the consumption patterns of the customers, in order to form specific customer classes containing customers exhibiting similar patterns. This paper illustrates and compares the results obtained by using various unsupervised clustering algorithms (modified follow-the-leader, hierarchical clustering, K-means, fuzzy K-means) and the self-organizing maps to group together customers with similar electrical behavior. Furthermore, this paper discusses and compares various techniques-Sammon map, principal component analysis (PCA), and curvilinear component analysis (CCA)-able to reduce the size of the clustering input data set, in order to allow for storing a relatively small amount of data in the database of the distribution service provider for customer classification purposes. The effectiveness of the classifications obtained with the algorithms tested is compared in terms of a set of clustering validity indicators. Results obtained on a set of nonresidential customers are presented.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2006.873122</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Buildings ; Classification ; Clustering ; Clustering algorithms ; Condition monitoring ; curvilinear component analysis ; customer classification ; Electricity ; follow-the-leader ; Fuzzy ; fuzzy K-means ; Fuzzy logic ; hierarchical clustering ; K-means ; load pattern ; Neural networks ; Pattern analysis ; Principal component analysis ; Sammon map ; self-organizing map (SOM) ; Studies ; Tariffs ; Testing</subject><ispartof>IEEE transactions on power systems, 2006-05, Vol.21 (2), p.933-940</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b0751afdc7b90d55f762a2630e521221881c378f07c0dd65e21084b1a1cfea723</citedby><cites>FETCH-LOGICAL-c469t-b0751afdc7b90d55f762a2630e521221881c378f07c0dd65e21084b1a1cfea723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1626400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chicco, G.</creatorcontrib><creatorcontrib>Napoli, R.</creatorcontrib><creatorcontrib>Piglione, F.</creatorcontrib><title>Comparisons among clustering techniques for electricity customer classification</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The recent evolution of the electricity business regulation has given new possibilities to the electricity providers for formulating dedicated tariff offers. A key aspect for building specific tariff structures is the identification of the consumption patterns of the customers, in order to form specific customer classes containing customers exhibiting similar patterns. This paper illustrates and compares the results obtained by using various unsupervised clustering algorithms (modified follow-the-leader, hierarchical clustering, K-means, fuzzy K-means) and the self-organizing maps to group together customers with similar electrical behavior. Furthermore, this paper discusses and compares various techniques-Sammon map, principal component analysis (PCA), and curvilinear component analysis (CCA)-able to reduce the size of the clustering input data set, in order to allow for storing a relatively small amount of data in the database of the distribution service provider for customer classification purposes. The effectiveness of the classifications obtained with the algorithms tested is compared in terms of a set of clustering validity indicators. Results obtained on a set of nonresidential customers are presented.</description><subject>Algorithms</subject><subject>Buildings</subject><subject>Classification</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Condition monitoring</subject><subject>curvilinear component analysis</subject><subject>customer classification</subject><subject>Electricity</subject><subject>follow-the-leader</subject><subject>Fuzzy</subject><subject>fuzzy K-means</subject><subject>Fuzzy logic</subject><subject>hierarchical clustering</subject><subject>K-means</subject><subject>load pattern</subject><subject>Neural networks</subject><subject>Pattern analysis</subject><subject>Principal component analysis</subject><subject>Sammon map</subject><subject>self-organizing map (SOM)</subject><subject>Studies</subject><subject>Tariffs</subject><subject>Testing</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90U1LxDAQBuAgCq6rP0C8FA966jpJm48eZfELhBVd8RiyaaJZ2mZN2sP-e1NXEDx4ykCeGWZ4ETrFMMMYqqvl09vzy4wAsJngBSZkD00wpSIHxqt9NAEhaC4qCofoKMY1JJg-Jmgx9-1GBRd9FzPV-u49080QexNcKnujPzr3OZiYWR8y0xjdB6ddv810Qr41IXEVo7NOq9757hgdWNVEc_LzTtHr7c1yfp8_Lu4e5tePuS5Z1ecr4BQrW2u-qqCm1HJGFGEFGErS8lgIrAsuLHANdc2oIRhEucIKa2sUJ8UUXe7mboIf9-tl66I2TaM644coRcUIcEF4khf_SsIrwUhJEzz_A9d-CF26QgpGRcGBjAjvkA4-xmCs3ATXqrCVGOSYhPxOQo5JyF0Sqeds1-OMMb-eEVYCFF8KkIV3</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Chicco, G.</creator><creator>Napoli, R.</creator><creator>Piglione, F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20060501</creationdate><title>Comparisons among clustering techniques for electricity customer classification</title><author>Chicco, G. ; Napoli, R. ; Piglione, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b0751afdc7b90d55f762a2630e521221881c378f07c0dd65e21084b1a1cfea723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Buildings</topic><topic>Classification</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Condition monitoring</topic><topic>curvilinear component analysis</topic><topic>customer classification</topic><topic>Electricity</topic><topic>follow-the-leader</topic><topic>Fuzzy</topic><topic>fuzzy K-means</topic><topic>Fuzzy logic</topic><topic>hierarchical clustering</topic><topic>K-means</topic><topic>load pattern</topic><topic>Neural networks</topic><topic>Pattern analysis</topic><topic>Principal component analysis</topic><topic>Sammon map</topic><topic>self-organizing map (SOM)</topic><topic>Studies</topic><topic>Tariffs</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chicco, G.</creatorcontrib><creatorcontrib>Napoli, R.</creatorcontrib><creatorcontrib>Piglione, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chicco, G.</au><au>Napoli, R.</au><au>Piglione, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparisons among clustering techniques for electricity customer classification</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2006-05-01</date><risdate>2006</risdate><volume>21</volume><issue>2</issue><spage>933</spage><epage>940</epage><pages>933-940</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The recent evolution of the electricity business regulation has given new possibilities to the electricity providers for formulating dedicated tariff offers. A key aspect for building specific tariff structures is the identification of the consumption patterns of the customers, in order to form specific customer classes containing customers exhibiting similar patterns. This paper illustrates and compares the results obtained by using various unsupervised clustering algorithms (modified follow-the-leader, hierarchical clustering, K-means, fuzzy K-means) and the self-organizing maps to group together customers with similar electrical behavior. Furthermore, this paper discusses and compares various techniques-Sammon map, principal component analysis (PCA), and curvilinear component analysis (CCA)-able to reduce the size of the clustering input data set, in order to allow for storing a relatively small amount of data in the database of the distribution service provider for customer classification purposes. The effectiveness of the classifications obtained with the algorithms tested is compared in terms of a set of clustering validity indicators. Results obtained on a set of nonresidential customers are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2006.873122</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2006-05, Vol.21 (2), p.933-940 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRS_2006_873122 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Buildings Classification Clustering Clustering algorithms Condition monitoring curvilinear component analysis customer classification Electricity follow-the-leader Fuzzy fuzzy K-means Fuzzy logic hierarchical clustering K-means load pattern Neural networks Pattern analysis Principal component analysis Sammon map self-organizing map (SOM) Studies Tariffs Testing |
title | Comparisons among clustering techniques for electricity customer classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparisons%20among%20clustering%20techniques%20for%20electricity%20customer%20classification&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Chicco,%20G.&rft.date=2006-05-01&rft.volume=21&rft.issue=2&rft.spage=933&rft.epage=940&rft.pages=933-940&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2006.873122&rft_dat=%3Cproquest_cross%3E896207827%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-b0751afdc7b90d55f762a2630e521221881c378f07c0dd65e21084b1a1cfea723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865837025&rft_id=info:pmid/&rft_ieee_id=1626400&rfr_iscdi=true |