Loading…
An Annual Midterm Energy Forecasting Model Using Fuzzy Logic
The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of pat...
Saved in:
Published in: | IEEE transactions on power systems 2009-02, Vol.24 (1), p.469-478 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283 |
container_end_page | 478 |
container_issue | 1 |
container_start_page | 469 |
container_title | IEEE transactions on power systems |
container_volume | 24 |
creator | Elias, C.N. Hatziargyriou, N.D. |
description | The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN). |
doi_str_mv | 10.1109/TPWRS.2008.2009490 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2008_2009490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4749373</ieee_id><sourcerecordid>2302924781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gF6CBz2lzmaz_8BLKa0KLYq2eFyy292SkiZ1Nzm0n97EFg8evMwMvN97MA-hawwDjEE-zN8-3z8GCYDohkwlnKAeplTEwLg8RT0QgsZCUjhHFyGsAYC1Qg89DstoWJZNVkSzfFlbv4nGpfWrXTSpvDVZqPNyFc2qpS2iRejuSbPf76JptcrNJTpzWRHs1XH30WIyno-e4-nr08toOI0NobyOjUskFpBpZhJniFtm2mnnqGNLYSjgBKgzQAWmmGGdCQegCddctzrRiSB9dH_I3frqq7GhVps8GFsUWWmrJijBOE9pmsiWvPuXJClNCBe0BW__gOuq8WX7hRJUMMkk7dKSA2R8FYK3Tm19vsn8TmFQXe_qp3fV9a6Ovbemm4Mpt9b-GlKeSsIJ-QaUI33B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858696959</pqid></control><display><type>article</type><title>An Annual Midterm Energy Forecasting Model Using Fuzzy Logic</title><source>IEEE Xplore (Online service)</source><creator>Elias, C.N. ; Hatziargyriou, N.D.</creator><creatorcontrib>Elias, C.N. ; Hatziargyriou, N.D.</creatorcontrib><description>The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN).</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2008.2009490</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Demand forecasting ; Economic forecasting ; Energy forecasting ; Fuzzy logic ; Input variables ; Job shop scheduling ; Load forecasting ; optimization of membership functions ; Power system analysis computing ; Power system modeling ; Predictive models ; standard deviation</subject><ispartof>IEEE transactions on power systems, 2009-02, Vol.24 (1), p.469-478</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283</citedby><cites>FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4749373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Elias, C.N.</creatorcontrib><creatorcontrib>Hatziargyriou, N.D.</creatorcontrib><title>An Annual Midterm Energy Forecasting Model Using Fuzzy Logic</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN).</description><subject>Artificial neural networks</subject><subject>Demand forecasting</subject><subject>Economic forecasting</subject><subject>Energy forecasting</subject><subject>Fuzzy logic</subject><subject>Input variables</subject><subject>Job shop scheduling</subject><subject>Load forecasting</subject><subject>optimization of membership functions</subject><subject>Power system analysis computing</subject><subject>Power system modeling</subject><subject>Predictive models</subject><subject>standard deviation</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFa_gF6CBz2lzmaz_8BLKa0KLYq2eFyy292SkiZ1Nzm0n97EFg8evMwMvN97MA-hawwDjEE-zN8-3z8GCYDohkwlnKAeplTEwLg8RT0QgsZCUjhHFyGsAYC1Qg89DstoWJZNVkSzfFlbv4nGpfWrXTSpvDVZqPNyFc2qpS2iRejuSbPf76JptcrNJTpzWRHs1XH30WIyno-e4-nr08toOI0NobyOjUskFpBpZhJniFtm2mnnqGNLYSjgBKgzQAWmmGGdCQegCddctzrRiSB9dH_I3frqq7GhVps8GFsUWWmrJijBOE9pmsiWvPuXJClNCBe0BW__gOuq8WX7hRJUMMkk7dKSA2R8FYK3Tm19vsn8TmFQXe_qp3fV9a6Ovbemm4Mpt9b-GlKeSsIJ-QaUI33B</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Elias, C.N.</creator><creator>Hatziargyriou, N.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20090201</creationdate><title>An Annual Midterm Energy Forecasting Model Using Fuzzy Logic</title><author>Elias, C.N. ; Hatziargyriou, N.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Demand forecasting</topic><topic>Economic forecasting</topic><topic>Energy forecasting</topic><topic>Fuzzy logic</topic><topic>Input variables</topic><topic>Job shop scheduling</topic><topic>Load forecasting</topic><topic>optimization of membership functions</topic><topic>Power system analysis computing</topic><topic>Power system modeling</topic><topic>Predictive models</topic><topic>standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elias, C.N.</creatorcontrib><creatorcontrib>Hatziargyriou, N.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elias, C.N.</au><au>Hatziargyriou, N.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Annual Midterm Energy Forecasting Model Using Fuzzy Logic</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>24</volume><issue>1</issue><spage>469</spage><epage>478</epage><pages>469-478</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2008.2009490</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2009-02, Vol.24 (1), p.469-478 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRS_2008_2009490 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Demand forecasting Economic forecasting Energy forecasting Fuzzy logic Input variables Job shop scheduling Load forecasting optimization of membership functions Power system analysis computing Power system modeling Predictive models standard deviation |
title | An Annual Midterm Energy Forecasting Model Using Fuzzy Logic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Annual%20Midterm%20Energy%20Forecasting%20Model%20Using%20Fuzzy%20Logic&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Elias,%20C.N.&rft.date=2009-02-01&rft.volume=24&rft.issue=1&rft.spage=469&rft.epage=478&rft.pages=469-478&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2008.2009490&rft_dat=%3Cproquest_cross%3E2302924781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858696959&rft_id=info:pmid/&rft_ieee_id=4749373&rfr_iscdi=true |