Loading…

An Annual Midterm Energy Forecasting Model Using Fuzzy Logic

The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of pat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2009-02, Vol.24 (1), p.469-478
Main Authors: Elias, C.N., Hatziargyriou, N.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283
cites cdi_FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283
container_end_page 478
container_issue 1
container_start_page 469
container_title IEEE transactions on power systems
container_volume 24
creator Elias, C.N.
Hatziargyriou, N.D.
description The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN).
doi_str_mv 10.1109/TPWRS.2008.2009490
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2008_2009490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4749373</ieee_id><sourcerecordid>2302924781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gF6CBz2lzmaz_8BLKa0KLYq2eFyy292SkiZ1Nzm0n97EFg8evMwMvN97MA-hawwDjEE-zN8-3z8GCYDohkwlnKAeplTEwLg8RT0QgsZCUjhHFyGsAYC1Qg89DstoWJZNVkSzfFlbv4nGpfWrXTSpvDVZqPNyFc2qpS2iRejuSbPf76JptcrNJTpzWRHs1XH30WIyno-e4-nr08toOI0NobyOjUskFpBpZhJniFtm2mnnqGNLYSjgBKgzQAWmmGGdCQegCddctzrRiSB9dH_I3frqq7GhVps8GFsUWWmrJijBOE9pmsiWvPuXJClNCBe0BW__gOuq8WX7hRJUMMkk7dKSA2R8FYK3Tm19vsn8TmFQXe_qp3fV9a6Ovbemm4Mpt9b-GlKeSsIJ-QaUI33B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858696959</pqid></control><display><type>article</type><title>An Annual Midterm Energy Forecasting Model Using Fuzzy Logic</title><source>IEEE Xplore (Online service)</source><creator>Elias, C.N. ; Hatziargyriou, N.D.</creator><creatorcontrib>Elias, C.N. ; Hatziargyriou, N.D.</creatorcontrib><description>The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN).</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2008.2009490</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Demand forecasting ; Economic forecasting ; Energy forecasting ; Fuzzy logic ; Input variables ; Job shop scheduling ; Load forecasting ; optimization of membership functions ; Power system analysis computing ; Power system modeling ; Predictive models ; standard deviation</subject><ispartof>IEEE transactions on power systems, 2009-02, Vol.24 (1), p.469-478</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283</citedby><cites>FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4749373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Elias, C.N.</creatorcontrib><creatorcontrib>Hatziargyriou, N.D.</creatorcontrib><title>An Annual Midterm Energy Forecasting Model Using Fuzzy Logic</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN).</description><subject>Artificial neural networks</subject><subject>Demand forecasting</subject><subject>Economic forecasting</subject><subject>Energy forecasting</subject><subject>Fuzzy logic</subject><subject>Input variables</subject><subject>Job shop scheduling</subject><subject>Load forecasting</subject><subject>optimization of membership functions</subject><subject>Power system analysis computing</subject><subject>Power system modeling</subject><subject>Predictive models</subject><subject>standard deviation</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFa_gF6CBz2lzmaz_8BLKa0KLYq2eFyy292SkiZ1Nzm0n97EFg8evMwMvN97MA-hawwDjEE-zN8-3z8GCYDohkwlnKAeplTEwLg8RT0QgsZCUjhHFyGsAYC1Qg89DstoWJZNVkSzfFlbv4nGpfWrXTSpvDVZqPNyFc2qpS2iRejuSbPf76JptcrNJTpzWRHs1XH30WIyno-e4-nr08toOI0NobyOjUskFpBpZhJniFtm2mnnqGNLYSjgBKgzQAWmmGGdCQegCddctzrRiSB9dH_I3frqq7GhVps8GFsUWWmrJijBOE9pmsiWvPuXJClNCBe0BW__gOuq8WX7hRJUMMkk7dKSA2R8FYK3Tm19vsn8TmFQXe_qp3fV9a6Ovbemm4Mpt9b-GlKeSsIJ-QaUI33B</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Elias, C.N.</creator><creator>Hatziargyriou, N.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20090201</creationdate><title>An Annual Midterm Energy Forecasting Model Using Fuzzy Logic</title><author>Elias, C.N. ; Hatziargyriou, N.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Demand forecasting</topic><topic>Economic forecasting</topic><topic>Energy forecasting</topic><topic>Fuzzy logic</topic><topic>Input variables</topic><topic>Job shop scheduling</topic><topic>Load forecasting</topic><topic>optimization of membership functions</topic><topic>Power system analysis computing</topic><topic>Power system modeling</topic><topic>Predictive models</topic><topic>standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elias, C.N.</creatorcontrib><creatorcontrib>Hatziargyriou, N.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elias, C.N.</au><au>Hatziargyriou, N.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Annual Midterm Energy Forecasting Model Using Fuzzy Logic</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>24</volume><issue>1</issue><spage>469</spage><epage>478</epage><pages>469-478</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The objective of this paper is to present a new fuzzy logic method for midterm energy forecasting. The proposed method properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set and to use a minimal number of patterns. The input variables, the number of the triangular membership functions and their base widths are simultaneously selected by an optimization process. The standard deviation is calculated analytically by mathematical expressions based on the membership functions. Results from an extensive application of the method to the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods and artificial neural networks (ANN).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2008.2009490</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2009-02, Vol.24 (1), p.469-478
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2008_2009490
source IEEE Xplore (Online service)
subjects Artificial neural networks
Demand forecasting
Economic forecasting
Energy forecasting
Fuzzy logic
Input variables
Job shop scheduling
Load forecasting
optimization of membership functions
Power system analysis computing
Power system modeling
Predictive models
standard deviation
title An Annual Midterm Energy Forecasting Model Using Fuzzy Logic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Annual%20Midterm%20Energy%20Forecasting%20Model%20Using%20Fuzzy%20Logic&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Elias,%20C.N.&rft.date=2009-02-01&rft.volume=24&rft.issue=1&rft.spage=469&rft.epage=478&rft.pages=469-478&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2008.2009490&rft_dat=%3Cproquest_cross%3E2302924781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-cf29180ab6c2fc3fdabfbff5f6d8c501205fc05815161ba8f00b37b7b6d83b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858696959&rft_id=info:pmid/&rft_ieee_id=4749373&rfr_iscdi=true