Loading…

Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through

This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy, the ro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2012-05, Vol.27 (2), p.713-722
Main Authors: Lihui Yang, Zhao Xu, Ostergaard, J., Zhao Yang Dong, Kit Po Wong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-46d77ced85aef864bdccca19b2a259b73ad67f31b3584b59e5f4d7c2a424e2593
cites cdi_FETCH-LOGICAL-c360t-46d77ced85aef864bdccca19b2a259b73ad67f31b3584b59e5f4d7c2a424e2593
container_end_page 722
container_issue 2
container_start_page 713
container_title IEEE transactions on power systems
container_volume 27
creator Lihui Yang
Zhao Xu
Ostergaard, J.
Zhao Yang Dong
Kit Po Wong
description This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy, the rotor side controller can convert the imbalanced power into the kinetic energy of the WT by increasing its rotor speed, when a low voltage due to a grid fault occurs at, e.g., the point of common coupling (PCC). The proposed grid side control scheme introduces a compensation term reflecting the instantaneous DC-link current of the rotor side converter in order to smooth the DC-link voltage fluctuations during the grid fault. A major difference from other methods is that the proposed control strategy can absorb the additional kinetic energy during the fault conditions, and significantly reduce the oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT, but also help maintaining continuous active and reactive power control of the DFIG during the grid faults.
doi_str_mv 10.1109/TPWRS.2011.2174387
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2011_2174387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6112194</ieee_id><sourcerecordid>10_1109_TPWRS_2011_2174387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-46d77ced85aef864bdccca19b2a259b73ad67f31b3584b59e5f4d7c2a424e2593</originalsourceid><addsrcrecordid>eNo9kMtOAjEYhRujiYi-gG76AoO9t7MkKEhCImHGsJx0eoExMDXtoOHtHYS4-hfn_85JPgAeMRphjPLncrleFSOCMB4RLBlV8goMMOcqQ0Lm12CAlOKZyjm6BXcpfSKERB8MQDG237o1zsJJaLsYdrDoou7c5giDhy_T-Qyum9bC8hDrpnUJ-hDhMvy4CItj6tweTvVh18FVYx0stzEcNtt7cOP1LrmHyx2Cj-lrOXnLFu-z-WS8yAwVqMuYsFL2y4pr55VgtTXGaJzXRBOe15JqK6SnuKZcsZrnjntmpSGaEeb6DzoE5NxrYkgpOl99xWav47HCqDppqf60VCct1UVLDz2docY59w8IjAnOGf0F1j5fPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lihui Yang ; Zhao Xu ; Ostergaard, J. ; Zhao Yang Dong ; Kit Po Wong</creator><creatorcontrib>Lihui Yang ; Zhao Xu ; Ostergaard, J. ; Zhao Yang Dong ; Kit Po Wong</creatorcontrib><description>This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy, the rotor side controller can convert the imbalanced power into the kinetic energy of the WT by increasing its rotor speed, when a low voltage due to a grid fault occurs at, e.g., the point of common coupling (PCC). The proposed grid side control scheme introduces a compensation term reflecting the instantaneous DC-link current of the rotor side converter in order to smooth the DC-link voltage fluctuations during the grid fault. A major difference from other methods is that the proposed control strategy can absorb the additional kinetic energy during the fault conditions, and significantly reduce the oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT, but also help maintaining continuous active and reactive power control of the DFIG during the grid faults.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2011.2174387</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit faults ; Doubly fed induction generator (DFIG) ; Generators ; low voltage ride through ; power system fault ; Rotors ; Stators ; Voltage control ; Wind speed ; wind turbine ; Wind turbines</subject><ispartof>IEEE transactions on power systems, 2012-05, Vol.27 (2), p.713-722</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-46d77ced85aef864bdccca19b2a259b73ad67f31b3584b59e5f4d7c2a424e2593</citedby><cites>FETCH-LOGICAL-c360t-46d77ced85aef864bdccca19b2a259b73ad67f31b3584b59e5f4d7c2a424e2593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6112194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lihui Yang</creatorcontrib><creatorcontrib>Zhao Xu</creatorcontrib><creatorcontrib>Ostergaard, J.</creatorcontrib><creatorcontrib>Zhao Yang Dong</creatorcontrib><creatorcontrib>Kit Po Wong</creatorcontrib><title>Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy, the rotor side controller can convert the imbalanced power into the kinetic energy of the WT by increasing its rotor speed, when a low voltage due to a grid fault occurs at, e.g., the point of common coupling (PCC). The proposed grid side control scheme introduces a compensation term reflecting the instantaneous DC-link current of the rotor side converter in order to smooth the DC-link voltage fluctuations during the grid fault. A major difference from other methods is that the proposed control strategy can absorb the additional kinetic energy during the fault conditions, and significantly reduce the oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT, but also help maintaining continuous active and reactive power control of the DFIG during the grid faults.</description><subject>Circuit faults</subject><subject>Doubly fed induction generator (DFIG)</subject><subject>Generators</subject><subject>low voltage ride through</subject><subject>power system fault</subject><subject>Rotors</subject><subject>Stators</subject><subject>Voltage control</subject><subject>Wind speed</subject><subject>wind turbine</subject><subject>Wind turbines</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOAjEYhRujiYi-gG76AoO9t7MkKEhCImHGsJx0eoExMDXtoOHtHYS4-hfn_85JPgAeMRphjPLncrleFSOCMB4RLBlV8goMMOcqQ0Lm12CAlOKZyjm6BXcpfSKERB8MQDG237o1zsJJaLsYdrDoou7c5giDhy_T-Qyum9bC8hDrpnUJ-hDhMvy4CItj6tweTvVh18FVYx0stzEcNtt7cOP1LrmHyx2Cj-lrOXnLFu-z-WS8yAwVqMuYsFL2y4pr55VgtTXGaJzXRBOe15JqK6SnuKZcsZrnjntmpSGaEeb6DzoE5NxrYkgpOl99xWav47HCqDppqf60VCct1UVLDz2docY59w8IjAnOGf0F1j5fPw</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Lihui Yang</creator><creator>Zhao Xu</creator><creator>Ostergaard, J.</creator><creator>Zhao Yang Dong</creator><creator>Kit Po Wong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201205</creationdate><title>Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through</title><author>Lihui Yang ; Zhao Xu ; Ostergaard, J. ; Zhao Yang Dong ; Kit Po Wong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-46d77ced85aef864bdccca19b2a259b73ad67f31b3584b59e5f4d7c2a424e2593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Circuit faults</topic><topic>Doubly fed induction generator (DFIG)</topic><topic>Generators</topic><topic>low voltage ride through</topic><topic>power system fault</topic><topic>Rotors</topic><topic>Stators</topic><topic>Voltage control</topic><topic>Wind speed</topic><topic>wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lihui Yang</creatorcontrib><creatorcontrib>Zhao Xu</creatorcontrib><creatorcontrib>Ostergaard, J.</creatorcontrib><creatorcontrib>Zhao Yang Dong</creatorcontrib><creatorcontrib>Kit Po Wong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lihui Yang</au><au>Zhao Xu</au><au>Ostergaard, J.</au><au>Zhao Yang Dong</au><au>Kit Po Wong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2012-05</date><risdate>2012</risdate><volume>27</volume><issue>2</issue><spage>713</spage><epage>722</epage><pages>713-722</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy, the rotor side controller can convert the imbalanced power into the kinetic energy of the WT by increasing its rotor speed, when a low voltage due to a grid fault occurs at, e.g., the point of common coupling (PCC). The proposed grid side control scheme introduces a compensation term reflecting the instantaneous DC-link current of the rotor side converter in order to smooth the DC-link voltage fluctuations during the grid fault. A major difference from other methods is that the proposed control strategy can absorb the additional kinetic energy during the fault conditions, and significantly reduce the oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT, but also help maintaining continuous active and reactive power control of the DFIG during the grid faults.</abstract><pub>IEEE</pub><doi>10.1109/TPWRS.2011.2174387</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2012-05, Vol.27 (2), p.713-722
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2011_2174387
source IEEE Electronic Library (IEL) Journals
subjects Circuit faults
Doubly fed induction generator (DFIG)
Generators
low voltage ride through
power system fault
Rotors
Stators
Voltage control
Wind speed
wind turbine
Wind turbines
title Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Control%20Strategy%20of%20DFIG%20Wind%20Turbines%20for%20Power%20System%20Fault%20Ride%20Through&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Lihui%20Yang&rft.date=2012-05&rft.volume=27&rft.issue=2&rft.spage=713&rft.epage=722&rft.pages=713-722&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2011.2174387&rft_dat=%3Ccrossref_ieee_%3E10_1109_TPWRS_2011_2174387%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-46d77ced85aef864bdccca19b2a259b73ad67f31b3584b59e5f4d7c2a424e2593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6112194&rfr_iscdi=true