Loading…
Damping of inter-area oscillations in mixed AC/DC networks using WAMS based supplementary controller
The paper presents a supplementary VSC-HVDC Power Oscillation Damping (POD) controller based on wide area measurement signals (WAMS). The controller is designed as Multi Input Single Output (MISO) using a Modal Linear Quadratic Gaussian (MLQG) methodology in order to target critical inter-area elect...
Saved in:
Published in: | IEEE transactions on power systems 2013-05, Vol.28 (2), p.1160-1169 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper presents a supplementary VSC-HVDC Power Oscillation Damping (POD) controller based on wide area measurement signals (WAMS). The controller is designed as Multi Input Single Output (MISO) using a Modal Linear Quadratic Gaussian (MLQG) methodology in order to target critical inter-area electromechanical modes. The approach has been tested on a large (16 machine, 68 bus) test network incorporating parallel HVDC/AC transmission and has shown improved damping compared to a traditional Power System Stabilizer (PSS) based controller structure utilizing local signals. The design process has incorporated the effects of wide area signal transmission delays. Variation in these signal delays and the complete loss of signals has been also investigated to establish the robustness of the WAMS based controller and its sensitivity to loss of signals. Extension of the controller to incorporate reactive power modulation has been investigated, as has variation in available active power modulation capacity. The proposed controller performance has been assessed through small and large disturbance analysis. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2012.2207745 |