Loading…
GPU-Accelerated Algorithm for Online Probabilistic Power Flow
This letter proposes a superior GPU-accelerated algorithm for probabilistic power flow (PPF) based on Monte-Carlo simulation with simple random sampling (MCS-SRS). By means of offloading the tremendous computational burden to GPU, the algorithm can solve PPF in an extremely fast manner, two orders o...
Saved in:
Published in: | IEEE transactions on power systems 2018-01, Vol.33 (1), p.1132-1135 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This letter proposes a superior GPU-accelerated algorithm for probabilistic power flow (PPF) based on Monte-Carlo simulation with simple random sampling (MCS-SRS). By means of offloading the tremendous computational burden to GPU, the algorithm can solve PPF in an extremely fast manner, two orders of magnitude faster in comparison to its CPU-based counterpart. Case studies on three large-scale systems show that the proposed algorithm can solve a whole PPF analysis with 10000 SRS and ultra-high-dimensional dependent uncertainty sources in seconds and therefore presents a highly promising solution for online PPF applications. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2017.2756339 |