Loading…
An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance
The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical mod...
Saved in:
Published in: | IEEE transactions on power systems 2020-07, Vol.35 (4), p.2527-2536 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23 |
container_end_page | 2536 |
container_issue | 4 |
container_start_page | 2527 |
container_title | IEEE transactions on power systems |
container_volume | 35 |
creator | Liu, Liu Li, Weidong Ba, Yu Shen, Jiakai Jin, Cuicui Wen, Kerui |
description | The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical model for the frequency nadir prediction, the closed-loop is broken and a parabolic frequency deviation is input for decoupling the calculation of governor response and frequency deviation. Following which, the polynomial fitting is adopted to depict the primary frequency response characteristic of each governor. The iterative numerical solution for the frequency nadir prediction model is carried out based on the insight into the features of governor response. Case studies are presented to verify the performance of the analytical model over WSCC 9-bus system, New England 39-bus system and practical provincial power system, where the frequency nadir prediction model demonstrates its advantages of easy implementation, minimum computation, and high accuracy. |
doi_str_mv | 10.1109/TPWRS.2019.2963706 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2019_2963706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8949711</ieee_id><sourcerecordid>2414533207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1sn35tjqVaFVotWPIY0m5WUdaPJFum_d2uLpznM-7zMPAhdEhgRAvpmuXh_eR1RIHpEtWQK5BEaECHKAqTSx2gAZSmKUgs4RWc5rwFA9osBWoxbPG5ts-2Csw2ex8o3uI4JT5P_3vjWbfGTrULCi-Sr4LoQWzyNTRN_QvuBLZ7bdR--DbnbpJVtnT9HJ7Vtsr84zCF6m94tJw_F7Pn-cTKeFY5x3hVEcukFV5oAq1hZa1LV2nrphPIrJbRmTloCzpVUW1V5vbLEEifBWcqoo2yIrve9Xyn2h-bOrOMm9Z9kQznhgjEKqk_RfcqlmHPytflK4dOmrSFgdubMnzmzM2cO5nroag8F7_0_UGquFSHsF7iVae4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414533207</pqid></control><display><type>article</type><title>An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Liu ; Li, Weidong ; Ba, Yu ; Shen, Jiakai ; Jin, Cuicui ; Wen, Kerui</creator><creatorcontrib>Liu, Liu ; Li, Weidong ; Ba, Yu ; Shen, Jiakai ; Jin, Cuicui ; Wen, Kerui</creatorcontrib><description>The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical model for the frequency nadir prediction, the closed-loop is broken and a parabolic frequency deviation is input for decoupling the calculation of governor response and frequency deviation. Following which, the polynomial fitting is adopted to depict the primary frequency response characteristic of each governor. The iterative numerical solution for the frequency nadir prediction model is carried out based on the insight into the features of governor response. Case studies are presented to verify the performance of the analytical model over WSCC 9-bus system, New England 39-bus system and practical provincial power system, where the frequency nadir prediction model demonstrates its advantages of easy implementation, minimum computation, and high accuracy.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2963706</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Analytical models ; Computational modeling ; Decoupling ; Frequency deviation ; Frequency nadir ; Frequency response ; Generators ; Governors ; Iterative methods ; Mathematical analysis ; Mathematical model ; Mathematical models ; maximum frequency deviation ; Polynomials ; power deficit ; Prediction models ; Predictive models ; primary frequency response ; Time-frequency analysis</subject><ispartof>IEEE transactions on power systems, 2020-07, Vol.35 (4), p.2527-2536</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23</citedby><cites>FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23</cites><orcidid>0000-0002-1780-8431 ; 0000-0002-1623-1706 ; 0000-0002-9844-4974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8949711$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Liu, Liu</creatorcontrib><creatorcontrib>Li, Weidong</creatorcontrib><creatorcontrib>Ba, Yu</creatorcontrib><creatorcontrib>Shen, Jiakai</creatorcontrib><creatorcontrib>Jin, Cuicui</creatorcontrib><creatorcontrib>Wen, Kerui</creatorcontrib><title>An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical model for the frequency nadir prediction, the closed-loop is broken and a parabolic frequency deviation is input for decoupling the calculation of governor response and frequency deviation. Following which, the polynomial fitting is adopted to depict the primary frequency response characteristic of each governor. The iterative numerical solution for the frequency nadir prediction model is carried out based on the insight into the features of governor response. Case studies are presented to verify the performance of the analytical model over WSCC 9-bus system, New England 39-bus system and practical provincial power system, where the frequency nadir prediction model demonstrates its advantages of easy implementation, minimum computation, and high accuracy.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Decoupling</subject><subject>Frequency deviation</subject><subject>Frequency nadir</subject><subject>Frequency response</subject><subject>Generators</subject><subject>Governors</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>maximum frequency deviation</subject><subject>Polynomials</subject><subject>power deficit</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>primary frequency response</subject><subject>Time-frequency analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1sn35tjqVaFVotWPIY0m5WUdaPJFum_d2uLpznM-7zMPAhdEhgRAvpmuXh_eR1RIHpEtWQK5BEaECHKAqTSx2gAZSmKUgs4RWc5rwFA9osBWoxbPG5ts-2Csw2ex8o3uI4JT5P_3vjWbfGTrULCi-Sr4LoQWzyNTRN_QvuBLZ7bdR--DbnbpJVtnT9HJ7Vtsr84zCF6m94tJw_F7Pn-cTKeFY5x3hVEcukFV5oAq1hZa1LV2nrphPIrJbRmTloCzpVUW1V5vbLEEifBWcqoo2yIrve9Xyn2h-bOrOMm9Z9kQznhgjEKqk_RfcqlmHPytflK4dOmrSFgdubMnzmzM2cO5nroag8F7_0_UGquFSHsF7iVae4</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Liu, Liu</creator><creator>Li, Weidong</creator><creator>Ba, Yu</creator><creator>Shen, Jiakai</creator><creator>Jin, Cuicui</creator><creator>Wen, Kerui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1780-8431</orcidid><orcidid>https://orcid.org/0000-0002-1623-1706</orcidid><orcidid>https://orcid.org/0000-0002-9844-4974</orcidid></search><sort><creationdate>202007</creationdate><title>An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance</title><author>Liu, Liu ; Li, Weidong ; Ba, Yu ; Shen, Jiakai ; Jin, Cuicui ; Wen, Kerui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Decoupling</topic><topic>Frequency deviation</topic><topic>Frequency nadir</topic><topic>Frequency response</topic><topic>Generators</topic><topic>Governors</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>maximum frequency deviation</topic><topic>Polynomials</topic><topic>power deficit</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>primary frequency response</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liu</creatorcontrib><creatorcontrib>Li, Weidong</creatorcontrib><creatorcontrib>Ba, Yu</creatorcontrib><creatorcontrib>Shen, Jiakai</creatorcontrib><creatorcontrib>Jin, Cuicui</creatorcontrib><creatorcontrib>Wen, Kerui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liu</au><au>Li, Weidong</au><au>Ba, Yu</au><au>Shen, Jiakai</au><au>Jin, Cuicui</au><au>Wen, Kerui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2020-07</date><risdate>2020</risdate><volume>35</volume><issue>4</issue><spage>2527</spage><epage>2536</epage><pages>2527-2536</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical model for the frequency nadir prediction, the closed-loop is broken and a parabolic frequency deviation is input for decoupling the calculation of governor response and frequency deviation. Following which, the polynomial fitting is adopted to depict the primary frequency response characteristic of each governor. The iterative numerical solution for the frequency nadir prediction model is carried out based on the insight into the features of governor response. Case studies are presented to verify the performance of the analytical model over WSCC 9-bus system, New England 39-bus system and practical provincial power system, where the frequency nadir prediction model demonstrates its advantages of easy implementation, minimum computation, and high accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2963706</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1780-8431</orcidid><orcidid>https://orcid.org/0000-0002-1623-1706</orcidid><orcidid>https://orcid.org/0000-0002-9844-4974</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2020-07, Vol.35 (4), p.2527-2536 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPWRS_2019_2963706 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Analytical models Computational modeling Decoupling Frequency deviation Frequency nadir Frequency response Generators Governors Iterative methods Mathematical analysis Mathematical model Mathematical models maximum frequency deviation Polynomials power deficit Prediction models Predictive models primary frequency response Time-frequency analysis |
title | An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analytical%20Model%20for%20Frequency%20Nadir%20Prediction%20Following%20a%20Major%20Disturbance&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Liu,%20Liu&rft.date=2020-07&rft.volume=35&rft.issue=4&rft.spage=2527&rft.epage=2536&rft.pages=2527-2536&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2963706&rft_dat=%3Cproquest_cross%3E2414533207%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414533207&rft_id=info:pmid/&rft_ieee_id=8949711&rfr_iscdi=true |