Loading…

An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance

The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical mod...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2020-07, Vol.35 (4), p.2527-2536
Main Authors: Liu, Liu, Li, Weidong, Ba, Yu, Shen, Jiakai, Jin, Cuicui, Wen, Kerui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23
cites cdi_FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23
container_end_page 2536
container_issue 4
container_start_page 2527
container_title IEEE transactions on power systems
container_volume 35
creator Liu, Liu
Li, Weidong
Ba, Yu
Shen, Jiakai
Jin, Cuicui
Wen, Kerui
description The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical model for the frequency nadir prediction, the closed-loop is broken and a parabolic frequency deviation is input for decoupling the calculation of governor response and frequency deviation. Following which, the polynomial fitting is adopted to depict the primary frequency response characteristic of each governor. The iterative numerical solution for the frequency nadir prediction model is carried out based on the insight into the features of governor response. Case studies are presented to verify the performance of the analytical model over WSCC 9-bus system, New England 39-bus system and practical provincial power system, where the frequency nadir prediction model demonstrates its advantages of easy implementation, minimum computation, and high accuracy.
doi_str_mv 10.1109/TPWRS.2019.2963706
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPWRS_2019_2963706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8949711</ieee_id><sourcerecordid>2414533207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1sn35tjqVaFVotWPIY0m5WUdaPJFum_d2uLpznM-7zMPAhdEhgRAvpmuXh_eR1RIHpEtWQK5BEaECHKAqTSx2gAZSmKUgs4RWc5rwFA9osBWoxbPG5ts-2Csw2ex8o3uI4JT5P_3vjWbfGTrULCi-Sr4LoQWzyNTRN_QvuBLZ7bdR--DbnbpJVtnT9HJ7Vtsr84zCF6m94tJw_F7Pn-cTKeFY5x3hVEcukFV5oAq1hZa1LV2nrphPIrJbRmTloCzpVUW1V5vbLEEifBWcqoo2yIrve9Xyn2h-bOrOMm9Z9kQznhgjEKqk_RfcqlmHPytflK4dOmrSFgdubMnzmzM2cO5nroag8F7_0_UGquFSHsF7iVae4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414533207</pqid></control><display><type>article</type><title>An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Liu ; Li, Weidong ; Ba, Yu ; Shen, Jiakai ; Jin, Cuicui ; Wen, Kerui</creator><creatorcontrib>Liu, Liu ; Li, Weidong ; Ba, Yu ; Shen, Jiakai ; Jin, Cuicui ; Wen, Kerui</creatorcontrib><description>The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical model for the frequency nadir prediction, the closed-loop is broken and a parabolic frequency deviation is input for decoupling the calculation of governor response and frequency deviation. Following which, the polynomial fitting is adopted to depict the primary frequency response characteristic of each governor. The iterative numerical solution for the frequency nadir prediction model is carried out based on the insight into the features of governor response. Case studies are presented to verify the performance of the analytical model over WSCC 9-bus system, New England 39-bus system and practical provincial power system, where the frequency nadir prediction model demonstrates its advantages of easy implementation, minimum computation, and high accuracy.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2963706</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Analytical models ; Computational modeling ; Decoupling ; Frequency deviation ; Frequency nadir ; Frequency response ; Generators ; Governors ; Iterative methods ; Mathematical analysis ; Mathematical model ; Mathematical models ; maximum frequency deviation ; Polynomials ; power deficit ; Prediction models ; Predictive models ; primary frequency response ; Time-frequency analysis</subject><ispartof>IEEE transactions on power systems, 2020-07, Vol.35 (4), p.2527-2536</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23</citedby><cites>FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23</cites><orcidid>0000-0002-1780-8431 ; 0000-0002-1623-1706 ; 0000-0002-9844-4974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8949711$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Liu, Liu</creatorcontrib><creatorcontrib>Li, Weidong</creatorcontrib><creatorcontrib>Ba, Yu</creatorcontrib><creatorcontrib>Shen, Jiakai</creatorcontrib><creatorcontrib>Jin, Cuicui</creatorcontrib><creatorcontrib>Wen, Kerui</creatorcontrib><title>An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical model for the frequency nadir prediction, the closed-loop is broken and a parabolic frequency deviation is input for decoupling the calculation of governor response and frequency deviation. Following which, the polynomial fitting is adopted to depict the primary frequency response characteristic of each governor. The iterative numerical solution for the frequency nadir prediction model is carried out based on the insight into the features of governor response. Case studies are presented to verify the performance of the analytical model over WSCC 9-bus system, New England 39-bus system and practical provincial power system, where the frequency nadir prediction model demonstrates its advantages of easy implementation, minimum computation, and high accuracy.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Decoupling</subject><subject>Frequency deviation</subject><subject>Frequency nadir</subject><subject>Frequency response</subject><subject>Generators</subject><subject>Governors</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>maximum frequency deviation</subject><subject>Polynomials</subject><subject>power deficit</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>primary frequency response</subject><subject>Time-frequency analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1sn35tjqVaFVotWPIY0m5WUdaPJFum_d2uLpznM-7zMPAhdEhgRAvpmuXh_eR1RIHpEtWQK5BEaECHKAqTSx2gAZSmKUgs4RWc5rwFA9osBWoxbPG5ts-2Csw2ex8o3uI4JT5P_3vjWbfGTrULCi-Sr4LoQWzyNTRN_QvuBLZ7bdR--DbnbpJVtnT9HJ7Vtsr84zCF6m94tJw_F7Pn-cTKeFY5x3hVEcukFV5oAq1hZa1LV2nrphPIrJbRmTloCzpVUW1V5vbLEEifBWcqoo2yIrve9Xyn2h-bOrOMm9Z9kQznhgjEKqk_RfcqlmHPytflK4dOmrSFgdubMnzmzM2cO5nroag8F7_0_UGquFSHsF7iVae4</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Liu, Liu</creator><creator>Li, Weidong</creator><creator>Ba, Yu</creator><creator>Shen, Jiakai</creator><creator>Jin, Cuicui</creator><creator>Wen, Kerui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1780-8431</orcidid><orcidid>https://orcid.org/0000-0002-1623-1706</orcidid><orcidid>https://orcid.org/0000-0002-9844-4974</orcidid></search><sort><creationdate>202007</creationdate><title>An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance</title><author>Liu, Liu ; Li, Weidong ; Ba, Yu ; Shen, Jiakai ; Jin, Cuicui ; Wen, Kerui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Decoupling</topic><topic>Frequency deviation</topic><topic>Frequency nadir</topic><topic>Frequency response</topic><topic>Generators</topic><topic>Governors</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>maximum frequency deviation</topic><topic>Polynomials</topic><topic>power deficit</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>primary frequency response</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liu</creatorcontrib><creatorcontrib>Li, Weidong</creatorcontrib><creatorcontrib>Ba, Yu</creatorcontrib><creatorcontrib>Shen, Jiakai</creatorcontrib><creatorcontrib>Jin, Cuicui</creatorcontrib><creatorcontrib>Wen, Kerui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liu</au><au>Li, Weidong</au><au>Ba, Yu</au><au>Shen, Jiakai</au><au>Jin, Cuicui</au><au>Wen, Kerui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2020-07</date><risdate>2020</risdate><volume>35</volume><issue>4</issue><spage>2527</spage><epage>2536</epage><pages>2527-2536</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The frequency nadir is a significant indicator for the primary frequency response monitoring and control. It is imperative to predict the maximum frequency deviation and the time at which the maximum occurs with high efficiency and accuracy following a major disturbance. To develop an analytical model for the frequency nadir prediction, the closed-loop is broken and a parabolic frequency deviation is input for decoupling the calculation of governor response and frequency deviation. Following which, the polynomial fitting is adopted to depict the primary frequency response characteristic of each governor. The iterative numerical solution for the frequency nadir prediction model is carried out based on the insight into the features of governor response. Case studies are presented to verify the performance of the analytical model over WSCC 9-bus system, New England 39-bus system and practical provincial power system, where the frequency nadir prediction model demonstrates its advantages of easy implementation, minimum computation, and high accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2963706</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1780-8431</orcidid><orcidid>https://orcid.org/0000-0002-1623-1706</orcidid><orcidid>https://orcid.org/0000-0002-9844-4974</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2020-07, Vol.35 (4), p.2527-2536
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_TPWRS_2019_2963706
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Analytical models
Computational modeling
Decoupling
Frequency deviation
Frequency nadir
Frequency response
Generators
Governors
Iterative methods
Mathematical analysis
Mathematical model
Mathematical models
maximum frequency deviation
Polynomials
power deficit
Prediction models
Predictive models
primary frequency response
Time-frequency analysis
title An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analytical%20Model%20for%20Frequency%20Nadir%20Prediction%20Following%20a%20Major%20Disturbance&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Liu,%20Liu&rft.date=2020-07&rft.volume=35&rft.issue=4&rft.spage=2527&rft.epage=2536&rft.pages=2527-2536&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2963706&rft_dat=%3Cproquest_cross%3E2414533207%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-1646e5479103d38f91df9ae6c57eb75993c6a10cc829a7de9ba1a1c60ca232c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414533207&rft_id=info:pmid/&rft_ieee_id=8949711&rfr_iscdi=true