Loading…
Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella
Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming...
Saved in:
Published in: | IEEE transactions on robotics 2014-02, Vol.30 (1), p.3-13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 3 |
container_title | IEEE transactions on robotics |
container_volume | 30 |
creator | Zhou Ye Regnier, Stephane Sitti, Metin |
description | Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming robot design with multiple flexible artificial flagella that benefits from the increased number of flagella. The characteristic length of the robot body is less than 1 mm. Experimental characterization of swimming of the robot shows that swimming speed can be linearly improved solely by increasing the number of attached flagella, suggesting a new way for speed enhancement besides flagellum geometry optimization. In addition, a numerical model modified from the single, straight flexible flagellum case is further established to study propulsive force generation by nonstraight, flexible flagellum. A robot with multiple, sinusoidal flagella design is fabricated to demonstrate the capability of the proposed two-step photolithography-based microfabrication method to handle more complex flagella designs, which may enhance swimming performance. |
doi_str_mv | 10.1109/TRO.2013.2280058 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2013_2280058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6600934</ieee_id><sourcerecordid>1520967552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxYMoqNW74CXgxUvq7Ef24yhiVbQUasXjskkmdUua1OwG9b93a8WDp3kwvzfMe0lyRmBMCOirxXw2pkDYmFIFkKu95IhoTjLgQu1Hnec0Y6DVYXLs_QqAcg3sKHmcd8EG1y7TqV22GFyZTl3rbBh6TJ8_3Hq93c27ogs-fXXhLZ0OTXCbBtNJg5-u-BF2iU1jT5KD2jYeT3_nKHmZ3C5u7rOn2d3DzfVTVjJJQsZ1VQmGucKiAsElQ15bQQsra4GaV0pzVcrSYgQLtJJyJeuKlTwm4VQoNkoud3c3ffc-oA9m7Xy5_aDFbvCG5BS0kDFxRC_-oatu6Nv4nSFcS2BCKhIp2FFl33nfY202vVvb_ssQMNt2TWzXbNs1v-1Gy_nO4hDxDxcCQDPOvgFBqHUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497036781</pqid></control><display><type>article</type><title>Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhou Ye ; Regnier, Stephane ; Sitti, Metin</creator><creatorcontrib>Zhou Ye ; Regnier, Stephane ; Sitti, Metin</creatorcontrib><description>Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming robot design with multiple flexible artificial flagella that benefits from the increased number of flagella. The characteristic length of the robot body is less than 1 mm. Experimental characterization of swimming of the robot shows that swimming speed can be linearly improved solely by increasing the number of attached flagella, suggesting a new way for speed enhancement besides flagellum geometry optimization. In addition, a numerical model modified from the single, straight flexible flagellum case is further established to study propulsive force generation by nonstraight, flexible flagellum. A robot with multiple, sinusoidal flagella design is fabricated to demonstrate the capability of the proposed two-step photolithography-based microfabrication method to handle more complex flagella designs, which may enhance swimming performance.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2013.2280058</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Drag ; Force ; Geometry ; Handles ; Hydrodynamics ; Magnetic actuation ; Mathematical models ; microrobotics ; Miniature ; multiple artificial flagella ; Optimization ; Photolithography ; Propulsion ; Robots ; Rotating ; Swimming ; swimming robot ; Torque</subject><ispartof>IEEE transactions on robotics, 2014-02, Vol.30 (1), p.3-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683</citedby><cites>FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6600934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Zhou Ye</creatorcontrib><creatorcontrib>Regnier, Stephane</creatorcontrib><creatorcontrib>Sitti, Metin</creatorcontrib><title>Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming robot design with multiple flexible artificial flagella that benefits from the increased number of flagella. The characteristic length of the robot body is less than 1 mm. Experimental characterization of swimming of the robot shows that swimming speed can be linearly improved solely by increasing the number of attached flagella, suggesting a new way for speed enhancement besides flagellum geometry optimization. In addition, a numerical model modified from the single, straight flexible flagellum case is further established to study propulsive force generation by nonstraight, flexible flagellum. A robot with multiple, sinusoidal flagella design is fabricated to demonstrate the capability of the proposed two-step photolithography-based microfabrication method to handle more complex flagella designs, which may enhance swimming performance.</description><subject>Drag</subject><subject>Force</subject><subject>Geometry</subject><subject>Handles</subject><subject>Hydrodynamics</subject><subject>Magnetic actuation</subject><subject>Mathematical models</subject><subject>microrobotics</subject><subject>Miniature</subject><subject>multiple artificial flagella</subject><subject>Optimization</subject><subject>Photolithography</subject><subject>Propulsion</subject><subject>Robots</subject><subject>Rotating</subject><subject>Swimming</subject><subject>swimming robot</subject><subject>Torque</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Lw0AQxYMoqNW74CXgxUvq7Ef24yhiVbQUasXjskkmdUua1OwG9b93a8WDp3kwvzfMe0lyRmBMCOirxXw2pkDYmFIFkKu95IhoTjLgQu1Hnec0Y6DVYXLs_QqAcg3sKHmcd8EG1y7TqV22GFyZTl3rbBh6TJ8_3Hq93c27ogs-fXXhLZ0OTXCbBtNJg5-u-BF2iU1jT5KD2jYeT3_nKHmZ3C5u7rOn2d3DzfVTVjJJQsZ1VQmGucKiAsElQ15bQQsra4GaV0pzVcrSYgQLtJJyJeuKlTwm4VQoNkoud3c3ffc-oA9m7Xy5_aDFbvCG5BS0kDFxRC_-oatu6Nv4nSFcS2BCKhIp2FFl33nfY202vVvb_ssQMNt2TWzXbNs1v-1Gy_nO4hDxDxcCQDPOvgFBqHUo</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Zhou Ye</creator><creator>Regnier, Stephane</creator><creator>Sitti, Metin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20140201</creationdate><title>Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella</title><author>Zhou Ye ; Regnier, Stephane ; Sitti, Metin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Drag</topic><topic>Force</topic><topic>Geometry</topic><topic>Handles</topic><topic>Hydrodynamics</topic><topic>Magnetic actuation</topic><topic>Mathematical models</topic><topic>microrobotics</topic><topic>Miniature</topic><topic>multiple artificial flagella</topic><topic>Optimization</topic><topic>Photolithography</topic><topic>Propulsion</topic><topic>Robots</topic><topic>Rotating</topic><topic>Swimming</topic><topic>swimming robot</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou Ye</creatorcontrib><creatorcontrib>Regnier, Stephane</creatorcontrib><creatorcontrib>Sitti, Metin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou Ye</au><au>Regnier, Stephane</au><au>Sitti, Metin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>30</volume><issue>1</issue><spage>3</spage><epage>13</epage><pages>3-13</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming robot design with multiple flexible artificial flagella that benefits from the increased number of flagella. The characteristic length of the robot body is less than 1 mm. Experimental characterization of swimming of the robot shows that swimming speed can be linearly improved solely by increasing the number of attached flagella, suggesting a new way for speed enhancement besides flagellum geometry optimization. In addition, a numerical model modified from the single, straight flexible flagellum case is further established to study propulsive force generation by nonstraight, flexible flagellum. A robot with multiple, sinusoidal flagella design is fabricated to demonstrate the capability of the proposed two-step photolithography-based microfabrication method to handle more complex flagella designs, which may enhance swimming performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2013.2280058</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2014-02, Vol.30 (1), p.3-13 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TRO_2013_2280058 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Drag Force Geometry Handles Hydrodynamics Magnetic actuation Mathematical models microrobotics Miniature multiple artificial flagella Optimization Photolithography Propulsion Robots Rotating Swimming swimming robot Torque |
title | Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating%20Magnetic%20Miniature%20Swimming%20Robots%20With%20Multiple%20Flexible%20Flagella&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Zhou%20Ye&rft.date=2014-02-01&rft.volume=30&rft.issue=1&rft.spage=3&rft.epage=13&rft.pages=3-13&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2013.2280058&rft_dat=%3Cproquest_cross%3E1520967552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1497036781&rft_id=info:pmid/&rft_ieee_id=6600934&rfr_iscdi=true |