Loading…

Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella

Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics 2014-02, Vol.30 (1), p.3-13
Main Authors: Zhou Ye, Regnier, Stephane, Sitti, Metin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683
cites cdi_FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683
container_end_page 13
container_issue 1
container_start_page 3
container_title IEEE transactions on robotics
container_volume 30
creator Zhou Ye
Regnier, Stephane
Sitti, Metin
description Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming robot design with multiple flexible artificial flagella that benefits from the increased number of flagella. The characteristic length of the robot body is less than 1 mm. Experimental characterization of swimming of the robot shows that swimming speed can be linearly improved solely by increasing the number of attached flagella, suggesting a new way for speed enhancement besides flagellum geometry optimization. In addition, a numerical model modified from the single, straight flexible flagellum case is further established to study propulsive force generation by nonstraight, flexible flagellum. A robot with multiple, sinusoidal flagella design is fabricated to demonstrate the capability of the proposed two-step photolithography-based microfabrication method to handle more complex flagella designs, which may enhance swimming performance.
doi_str_mv 10.1109/TRO.2013.2280058
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2013_2280058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6600934</ieee_id><sourcerecordid>1520967552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxYMoqNW74CXgxUvq7Ef24yhiVbQUasXjskkmdUua1OwG9b93a8WDp3kwvzfMe0lyRmBMCOirxXw2pkDYmFIFkKu95IhoTjLgQu1Hnec0Y6DVYXLs_QqAcg3sKHmcd8EG1y7TqV22GFyZTl3rbBh6TJ8_3Hq93c27ogs-fXXhLZ0OTXCbBtNJg5-u-BF2iU1jT5KD2jYeT3_nKHmZ3C5u7rOn2d3DzfVTVjJJQsZ1VQmGucKiAsElQ15bQQsra4GaV0pzVcrSYgQLtJJyJeuKlTwm4VQoNkoud3c3ffc-oA9m7Xy5_aDFbvCG5BS0kDFxRC_-oatu6Nv4nSFcS2BCKhIp2FFl33nfY202vVvb_ssQMNt2TWzXbNs1v-1Gy_nO4hDxDxcCQDPOvgFBqHUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497036781</pqid></control><display><type>article</type><title>Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhou Ye ; Regnier, Stephane ; Sitti, Metin</creator><creatorcontrib>Zhou Ye ; Regnier, Stephane ; Sitti, Metin</creatorcontrib><description>Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming robot design with multiple flexible artificial flagella that benefits from the increased number of flagella. The characteristic length of the robot body is less than 1 mm. Experimental characterization of swimming of the robot shows that swimming speed can be linearly improved solely by increasing the number of attached flagella, suggesting a new way for speed enhancement besides flagellum geometry optimization. In addition, a numerical model modified from the single, straight flexible flagellum case is further established to study propulsive force generation by nonstraight, flexible flagellum. A robot with multiple, sinusoidal flagella design is fabricated to demonstrate the capability of the proposed two-step photolithography-based microfabrication method to handle more complex flagella designs, which may enhance swimming performance.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2013.2280058</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Drag ; Force ; Geometry ; Handles ; Hydrodynamics ; Magnetic actuation ; Mathematical models ; microrobotics ; Miniature ; multiple artificial flagella ; Optimization ; Photolithography ; Propulsion ; Robots ; Rotating ; Swimming ; swimming robot ; Torque</subject><ispartof>IEEE transactions on robotics, 2014-02, Vol.30 (1), p.3-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683</citedby><cites>FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6600934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Zhou Ye</creatorcontrib><creatorcontrib>Regnier, Stephane</creatorcontrib><creatorcontrib>Sitti, Metin</creatorcontrib><title>Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming robot design with multiple flexible artificial flagella that benefits from the increased number of flagella. The characteristic length of the robot body is less than 1 mm. Experimental characterization of swimming of the robot shows that swimming speed can be linearly improved solely by increasing the number of attached flagella, suggesting a new way for speed enhancement besides flagellum geometry optimization. In addition, a numerical model modified from the single, straight flexible flagellum case is further established to study propulsive force generation by nonstraight, flexible flagellum. A robot with multiple, sinusoidal flagella design is fabricated to demonstrate the capability of the proposed two-step photolithography-based microfabrication method to handle more complex flagella designs, which may enhance swimming performance.</description><subject>Drag</subject><subject>Force</subject><subject>Geometry</subject><subject>Handles</subject><subject>Hydrodynamics</subject><subject>Magnetic actuation</subject><subject>Mathematical models</subject><subject>microrobotics</subject><subject>Miniature</subject><subject>multiple artificial flagella</subject><subject>Optimization</subject><subject>Photolithography</subject><subject>Propulsion</subject><subject>Robots</subject><subject>Rotating</subject><subject>Swimming</subject><subject>swimming robot</subject><subject>Torque</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Lw0AQxYMoqNW74CXgxUvq7Ef24yhiVbQUasXjskkmdUua1OwG9b93a8WDp3kwvzfMe0lyRmBMCOirxXw2pkDYmFIFkKu95IhoTjLgQu1Hnec0Y6DVYXLs_QqAcg3sKHmcd8EG1y7TqV22GFyZTl3rbBh6TJ8_3Hq93c27ogs-fXXhLZ0OTXCbBtNJg5-u-BF2iU1jT5KD2jYeT3_nKHmZ3C5u7rOn2d3DzfVTVjJJQsZ1VQmGucKiAsElQ15bQQsra4GaV0pzVcrSYgQLtJJyJeuKlTwm4VQoNkoud3c3ffc-oA9m7Xy5_aDFbvCG5BS0kDFxRC_-oatu6Nv4nSFcS2BCKhIp2FFl33nfY202vVvb_ssQMNt2TWzXbNs1v-1Gy_nO4hDxDxcCQDPOvgFBqHUo</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Zhou Ye</creator><creator>Regnier, Stephane</creator><creator>Sitti, Metin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20140201</creationdate><title>Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella</title><author>Zhou Ye ; Regnier, Stephane ; Sitti, Metin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Drag</topic><topic>Force</topic><topic>Geometry</topic><topic>Handles</topic><topic>Hydrodynamics</topic><topic>Magnetic actuation</topic><topic>Mathematical models</topic><topic>microrobotics</topic><topic>Miniature</topic><topic>multiple artificial flagella</topic><topic>Optimization</topic><topic>Photolithography</topic><topic>Propulsion</topic><topic>Robots</topic><topic>Rotating</topic><topic>Swimming</topic><topic>swimming robot</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou Ye</creatorcontrib><creatorcontrib>Regnier, Stephane</creatorcontrib><creatorcontrib>Sitti, Metin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou Ye</au><au>Regnier, Stephane</au><au>Sitti, Metin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>30</volume><issue>1</issue><spage>3</spage><epage>13</epage><pages>3-13</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Recent studies have been carried out for rotating single flexible flagellum: a possible propelling mechanism that has been adopted by several artificial microswimmers due to its relatively simple structure yet considerable propulsive force generation. In this paper, we introduce a miniature swimming robot design with multiple flexible artificial flagella that benefits from the increased number of flagella. The characteristic length of the robot body is less than 1 mm. Experimental characterization of swimming of the robot shows that swimming speed can be linearly improved solely by increasing the number of attached flagella, suggesting a new way for speed enhancement besides flagellum geometry optimization. In addition, a numerical model modified from the single, straight flexible flagellum case is further established to study propulsive force generation by nonstraight, flexible flagellum. A robot with multiple, sinusoidal flagella design is fabricated to demonstrate the capability of the proposed two-step photolithography-based microfabrication method to handle more complex flagella designs, which may enhance swimming performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2013.2280058</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2014-02, Vol.30 (1), p.3-13
issn 1552-3098
1941-0468
language eng
recordid cdi_crossref_primary_10_1109_TRO_2013_2280058
source IEEE Electronic Library (IEL) Journals
subjects Drag
Force
Geometry
Handles
Hydrodynamics
Magnetic actuation
Mathematical models
microrobotics
Miniature
multiple artificial flagella
Optimization
Photolithography
Propulsion
Robots
Rotating
Swimming
swimming robot
Torque
title Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating%20Magnetic%20Miniature%20Swimming%20Robots%20With%20Multiple%20Flexible%20Flagella&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Zhou%20Ye&rft.date=2014-02-01&rft.volume=30&rft.issue=1&rft.spage=3&rft.epage=13&rft.pages=3-13&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2013.2280058&rft_dat=%3Cproquest_cross%3E1520967552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-49dd63e58ebd06473e4fa62ba7f6e94d8948c7cae49dbea72487fd3c446842683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1497036781&rft_id=info:pmid/&rft_ieee_id=6600934&rfr_iscdi=true