Loading…

Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction

Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics 2019-12, Vol.35 (6), p.1419-1434
Main Authors: Chen, Yuqing, Braun, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3
cites cdi_FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3
container_end_page 1434
container_issue 6
container_start_page 1419
container_title IEEE transactions on robotics
container_volume 35
creator Chen, Yuqing
Braun, David J.
description Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the theoretical appeal of optimization challenging to exploit in real-world implementation. In this paper, we present a novel online optimal control formulation that aims to address the above-mentioned limitations. The formulation combines a model with measured state information to efficiently find near-optimal feedback controllers. The idea to combine a model with measurements from the actual motion is similar to what is used in model predictive control formulations, with the difference that here the model is not used for future prediction, the optimization is performed along the measured trajectory of the system, and the online computation is reduced to a minimum; it requires a small-scale, one time step, static optimization, instead of a large-scale, finite time horizon, dynamic optimization. The formulation can be used to solve optimal control problems defined with nonlinear cost, nonlinear dynamics, and box-constrained control inputs. Numerical simulations and hardware-in-the-loop experiments demonstrate the effectiveness of the proposed hardware-in-the-loop optimal control approach.
doi_str_mv 10.1109/TRO.2019.2929014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2019_2929014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8879548</ieee_id><sourcerecordid>2322763656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoqNW74CXgOXWS7Edy1GJtoVKRiicJaTKlW9dNzWYV_71bWjzNHJ73HeYh5IrDkHPQt4uX-VAA10OhhQaeHZEzrjPOICvUcb_nuWAStDol5227ARCZBnlG3ic2-h8bkVUNS2tksxC2dJow2lR9I51vU_VpazpG9EvrPugoNCmGmr5VaR26RJ-Cx5rd2xY9HXepi0ifI_rKpSo0F-RkZesWLw9zQF7HD4vRhM3mj9PR3Yw5oXlilpcZ5NwhlMLnKLnMfekKpSxHpcHJAkpvASRmBTi3LK3GlZYZCiWEXzo5IDf73m0MXx22yWxCF5v-pBFSiLKQRV70FOwpF0PbRlyZbeyfi7-Gg9lJNL1Es5NoDhL7yPU-UiHiP65UqfNMyT9DFW1C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322763656</pqid></control><display><type>article</type><title>Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction</title><source>IEEE Xplore (Online service)</source><creator>Chen, Yuqing ; Braun, David J.</creator><creatorcontrib>Chen, Yuqing ; Braun, David J.</creatorcontrib><description>Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the theoretical appeal of optimization challenging to exploit in real-world implementation. In this paper, we present a novel online optimal control formulation that aims to address the above-mentioned limitations. The formulation combines a model with measured state information to efficiently find near-optimal feedback controllers. The idea to combine a model with measurements from the actual motion is similar to what is used in model predictive control formulations, with the difference that here the model is not used for future prediction, the optimization is performed along the measured trajectory of the system, and the online computation is reduced to a minimum; it requires a small-scale, one time step, static optimization, instead of a large-scale, finite time horizon, dynamic optimization. The formulation can be used to solve optimal control problems defined with nonlinear cost, nonlinear dynamics, and box-constrained control inputs. Numerical simulations and hardware-in-the-loop experiments demonstrate the effectiveness of the proposed hardware-in-the-loop optimal control approach.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2019.2929014</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Computer simulation ; Control architectures and programming ; Control systems ; Dynamical systems ; Feedback control ; hardware-in-the-loop control ; Hardware-in-the-loop simulation ; Iterative methods ; Mathematical models ; Nonlinear control ; Nonlinear dynamics ; Numerical simulation ; On-line systems ; Optimal control ; Optimization ; optimization and optimal control ; Predictive control ; Predictive models ; Robot control ; Trajectory ; Trajectory measurement</subject><ispartof>IEEE transactions on robotics, 2019-12, Vol.35 (6), p.1419-1434</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3</citedby><cites>FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3</cites><orcidid>0000-0002-3672-3847 ; 0000-0003-1286-0617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8879548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Chen, Yuqing</creatorcontrib><creatorcontrib>Braun, David J.</creatorcontrib><title>Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the theoretical appeal of optimization challenging to exploit in real-world implementation. In this paper, we present a novel online optimal control formulation that aims to address the above-mentioned limitations. The formulation combines a model with measured state information to efficiently find near-optimal feedback controllers. The idea to combine a model with measurements from the actual motion is similar to what is used in model predictive control formulations, with the difference that here the model is not used for future prediction, the optimization is performed along the measured trajectory of the system, and the online computation is reduced to a minimum; it requires a small-scale, one time step, static optimization, instead of a large-scale, finite time horizon, dynamic optimization. The formulation can be used to solve optimal control problems defined with nonlinear cost, nonlinear dynamics, and box-constrained control inputs. Numerical simulations and hardware-in-the-loop experiments demonstrate the effectiveness of the proposed hardware-in-the-loop optimal control approach.</description><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Control architectures and programming</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Feedback control</subject><subject>hardware-in-the-loop control</subject><subject>Hardware-in-the-loop simulation</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Numerical simulation</subject><subject>On-line systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>optimization and optimal control</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Robot control</subject><subject>Trajectory</subject><subject>Trajectory measurement</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoqNW74CXgOXWS7Edy1GJtoVKRiicJaTKlW9dNzWYV_71bWjzNHJ73HeYh5IrDkHPQt4uX-VAA10OhhQaeHZEzrjPOICvUcb_nuWAStDol5227ARCZBnlG3ic2-h8bkVUNS2tksxC2dJow2lR9I51vU_VpazpG9EvrPugoNCmGmr5VaR26RJ-Cx5rd2xY9HXepi0ifI_rKpSo0F-RkZesWLw9zQF7HD4vRhM3mj9PR3Yw5oXlilpcZ5NwhlMLnKLnMfekKpSxHpcHJAkpvASRmBTi3LK3GlZYZCiWEXzo5IDf73m0MXx22yWxCF5v-pBFSiLKQRV70FOwpF0PbRlyZbeyfi7-Gg9lJNL1Es5NoDhL7yPU-UiHiP65UqfNMyT9DFW1C</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Chen, Yuqing</creator><creator>Braun, David J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3672-3847</orcidid><orcidid>https://orcid.org/0000-0003-1286-0617</orcidid></search><sort><creationdate>201912</creationdate><title>Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction</title><author>Chen, Yuqing ; Braun, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Control architectures and programming</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Feedback control</topic><topic>hardware-in-the-loop control</topic><topic>Hardware-in-the-loop simulation</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Numerical simulation</topic><topic>On-line systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>optimization and optimal control</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Robot control</topic><topic>Trajectory</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuqing</creatorcontrib><creatorcontrib>Braun, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuqing</au><au>Braun, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2019-12</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>1419</spage><epage>1434</epage><pages>1419-1434</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the theoretical appeal of optimization challenging to exploit in real-world implementation. In this paper, we present a novel online optimal control formulation that aims to address the above-mentioned limitations. The formulation combines a model with measured state information to efficiently find near-optimal feedback controllers. The idea to combine a model with measurements from the actual motion is similar to what is used in model predictive control formulations, with the difference that here the model is not used for future prediction, the optimization is performed along the measured trajectory of the system, and the online computation is reduced to a minimum; it requires a small-scale, one time step, static optimization, instead of a large-scale, finite time horizon, dynamic optimization. The formulation can be used to solve optimal control problems defined with nonlinear cost, nonlinear dynamics, and box-constrained control inputs. Numerical simulations and hardware-in-the-loop experiments demonstrate the effectiveness of the proposed hardware-in-the-loop optimal control approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2019.2929014</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3672-3847</orcidid><orcidid>https://orcid.org/0000-0003-1286-0617</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2019-12, Vol.35 (6), p.1419-1434
issn 1552-3098
1941-0468
language eng
recordid cdi_crossref_primary_10_1109_TRO_2019_2929014
source IEEE Xplore (Online service)
subjects Computational modeling
Computer simulation
Control architectures and programming
Control systems
Dynamical systems
Feedback control
hardware-in-the-loop control
Hardware-in-the-loop simulation
Iterative methods
Mathematical models
Nonlinear control
Nonlinear dynamics
Numerical simulation
On-line systems
Optimal control
Optimization
optimization and optimal control
Predictive control
Predictive models
Robot control
Trajectory
Trajectory measurement
title Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware-in-the-Loop%20Iterative%20Optimal%20Feedback%20Control%20Without%20Model-Based%20Future%20Prediction&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Chen,%20Yuqing&rft.date=2019-12&rft.volume=35&rft.issue=6&rft.spage=1419&rft.epage=1434&rft.pages=1419-1434&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2019.2929014&rft_dat=%3Cproquest_cross%3E2322763656%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322763656&rft_id=info:pmid/&rft_ieee_id=8879548&rfr_iscdi=true