Loading…
Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction
Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the t...
Saved in:
Published in: | IEEE transactions on robotics 2019-12, Vol.35 (6), p.1419-1434 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3 |
container_end_page | 1434 |
container_issue | 6 |
container_start_page | 1419 |
container_title | IEEE transactions on robotics |
container_volume | 35 |
creator | Chen, Yuqing Braun, David J. |
description | Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the theoretical appeal of optimization challenging to exploit in real-world implementation. In this paper, we present a novel online optimal control formulation that aims to address the above-mentioned limitations. The formulation combines a model with measured state information to efficiently find near-optimal feedback controllers. The idea to combine a model with measurements from the actual motion is similar to what is used in model predictive control formulations, with the difference that here the model is not used for future prediction, the optimization is performed along the measured trajectory of the system, and the online computation is reduced to a minimum; it requires a small-scale, one time step, static optimization, instead of a large-scale, finite time horizon, dynamic optimization. The formulation can be used to solve optimal control problems defined with nonlinear cost, nonlinear dynamics, and box-constrained control inputs. Numerical simulations and hardware-in-the-loop experiments demonstrate the effectiveness of the proposed hardware-in-the-loop optimal control approach. |
doi_str_mv | 10.1109/TRO.2019.2929014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2019_2929014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8879548</ieee_id><sourcerecordid>2322763656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoqNW74CXgOXWS7Edy1GJtoVKRiicJaTKlW9dNzWYV_71bWjzNHJ73HeYh5IrDkHPQt4uX-VAA10OhhQaeHZEzrjPOICvUcb_nuWAStDol5227ARCZBnlG3ic2-h8bkVUNS2tksxC2dJow2lR9I51vU_VpazpG9EvrPugoNCmGmr5VaR26RJ-Cx5rd2xY9HXepi0ifI_rKpSo0F-RkZesWLw9zQF7HD4vRhM3mj9PR3Yw5oXlilpcZ5NwhlMLnKLnMfekKpSxHpcHJAkpvASRmBTi3LK3GlZYZCiWEXzo5IDf73m0MXx22yWxCF5v-pBFSiLKQRV70FOwpF0PbRlyZbeyfi7-Gg9lJNL1Es5NoDhL7yPU-UiHiP65UqfNMyT9DFW1C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322763656</pqid></control><display><type>article</type><title>Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction</title><source>IEEE Xplore (Online service)</source><creator>Chen, Yuqing ; Braun, David J.</creator><creatorcontrib>Chen, Yuqing ; Braun, David J.</creatorcontrib><description>Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the theoretical appeal of optimization challenging to exploit in real-world implementation. In this paper, we present a novel online optimal control formulation that aims to address the above-mentioned limitations. The formulation combines a model with measured state information to efficiently find near-optimal feedback controllers. The idea to combine a model with measurements from the actual motion is similar to what is used in model predictive control formulations, with the difference that here the model is not used for future prediction, the optimization is performed along the measured trajectory of the system, and the online computation is reduced to a minimum; it requires a small-scale, one time step, static optimization, instead of a large-scale, finite time horizon, dynamic optimization. The formulation can be used to solve optimal control problems defined with nonlinear cost, nonlinear dynamics, and box-constrained control inputs. Numerical simulations and hardware-in-the-loop experiments demonstrate the effectiveness of the proposed hardware-in-the-loop optimal control approach.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2019.2929014</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Computer simulation ; Control architectures and programming ; Control systems ; Dynamical systems ; Feedback control ; hardware-in-the-loop control ; Hardware-in-the-loop simulation ; Iterative methods ; Mathematical models ; Nonlinear control ; Nonlinear dynamics ; Numerical simulation ; On-line systems ; Optimal control ; Optimization ; optimization and optimal control ; Predictive control ; Predictive models ; Robot control ; Trajectory ; Trajectory measurement</subject><ispartof>IEEE transactions on robotics, 2019-12, Vol.35 (6), p.1419-1434</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3</citedby><cites>FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3</cites><orcidid>0000-0002-3672-3847 ; 0000-0003-1286-0617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8879548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Chen, Yuqing</creatorcontrib><creatorcontrib>Braun, David J.</creatorcontrib><title>Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the theoretical appeal of optimization challenging to exploit in real-world implementation. In this paper, we present a novel online optimal control formulation that aims to address the above-mentioned limitations. The formulation combines a model with measured state information to efficiently find near-optimal feedback controllers. The idea to combine a model with measurements from the actual motion is similar to what is used in model predictive control formulations, with the difference that here the model is not used for future prediction, the optimization is performed along the measured trajectory of the system, and the online computation is reduced to a minimum; it requires a small-scale, one time step, static optimization, instead of a large-scale, finite time horizon, dynamic optimization. The formulation can be used to solve optimal control problems defined with nonlinear cost, nonlinear dynamics, and box-constrained control inputs. Numerical simulations and hardware-in-the-loop experiments demonstrate the effectiveness of the proposed hardware-in-the-loop optimal control approach.</description><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Control architectures and programming</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Feedback control</subject><subject>hardware-in-the-loop control</subject><subject>Hardware-in-the-loop simulation</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Numerical simulation</subject><subject>On-line systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>optimization and optimal control</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Robot control</subject><subject>Trajectory</subject><subject>Trajectory measurement</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoqNW74CXgOXWS7Edy1GJtoVKRiicJaTKlW9dNzWYV_71bWjzNHJ73HeYh5IrDkHPQt4uX-VAA10OhhQaeHZEzrjPOICvUcb_nuWAStDol5227ARCZBnlG3ic2-h8bkVUNS2tksxC2dJow2lR9I51vU_VpazpG9EvrPugoNCmGmr5VaR26RJ-Cx5rd2xY9HXepi0ifI_rKpSo0F-RkZesWLw9zQF7HD4vRhM3mj9PR3Yw5oXlilpcZ5NwhlMLnKLnMfekKpSxHpcHJAkpvASRmBTi3LK3GlZYZCiWEXzo5IDf73m0MXx22yWxCF5v-pBFSiLKQRV70FOwpF0PbRlyZbeyfi7-Gg9lJNL1Es5NoDhL7yPU-UiHiP65UqfNMyT9DFW1C</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Chen, Yuqing</creator><creator>Braun, David J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3672-3847</orcidid><orcidid>https://orcid.org/0000-0003-1286-0617</orcidid></search><sort><creationdate>201912</creationdate><title>Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction</title><author>Chen, Yuqing ; Braun, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Control architectures and programming</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Feedback control</topic><topic>hardware-in-the-loop control</topic><topic>Hardware-in-the-loop simulation</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Numerical simulation</topic><topic>On-line systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>optimization and optimal control</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Robot control</topic><topic>Trajectory</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuqing</creatorcontrib><creatorcontrib>Braun, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuqing</au><au>Braun, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2019-12</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>1419</spage><epage>1434</epage><pages>1419-1434</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the theoretical appeal of optimization challenging to exploit in real-world implementation. In this paper, we present a novel online optimal control formulation that aims to address the above-mentioned limitations. The formulation combines a model with measured state information to efficiently find near-optimal feedback controllers. The idea to combine a model with measurements from the actual motion is similar to what is used in model predictive control formulations, with the difference that here the model is not used for future prediction, the optimization is performed along the measured trajectory of the system, and the online computation is reduced to a minimum; it requires a small-scale, one time step, static optimization, instead of a large-scale, finite time horizon, dynamic optimization. The formulation can be used to solve optimal control problems defined with nonlinear cost, nonlinear dynamics, and box-constrained control inputs. Numerical simulations and hardware-in-the-loop experiments demonstrate the effectiveness of the proposed hardware-in-the-loop optimal control approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2019.2929014</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3672-3847</orcidid><orcidid>https://orcid.org/0000-0003-1286-0617</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2019-12, Vol.35 (6), p.1419-1434 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TRO_2019_2929014 |
source | IEEE Xplore (Online service) |
subjects | Computational modeling Computer simulation Control architectures and programming Control systems Dynamical systems Feedback control hardware-in-the-loop control Hardware-in-the-loop simulation Iterative methods Mathematical models Nonlinear control Nonlinear dynamics Numerical simulation On-line systems Optimal control Optimization optimization and optimal control Predictive control Predictive models Robot control Trajectory Trajectory measurement |
title | Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware-in-the-Loop%20Iterative%20Optimal%20Feedback%20Control%20Without%20Model-Based%20Future%20Prediction&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Chen,%20Yuqing&rft.date=2019-12&rft.volume=35&rft.issue=6&rft.spage=1419&rft.epage=1434&rft.pages=1419-1434&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2019.2929014&rft_dat=%3Cproquest_cross%3E2322763656%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a174051ce072d5e3135d7c688a1e890c3607da003e460ccb7a9ef934e2822dbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322763656&rft_id=info:pmid/&rft_ieee_id=8879548&rfr_iscdi=true |