Loading…
Feasible Region: An Actuation-Aware Extension of the Support Region
In legged locomotion, the projection of the robot's Center of Mass (CoM) being inside the convex hull of the contact points is a commonly accepted sufficient condition to achieve static balancing. However, some of these configurations cannot be realized because the joint-torques required to sus...
Saved in:
Published in: | IEEE transactions on robotics 2020-08, Vol.36 (4), p.1239-1255 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In legged locomotion, the projection of the robot's Center of Mass (CoM) being inside the convex hull of the contact points is a commonly accepted sufficient condition to achieve static balancing. However, some of these configurations cannot be realized because the joint-torques required to sustain them would be above their limits (actuation limits). In this article, we rule out such configurations and define the feasible region, a revisited support region that guarantees both global static stability in the sense of tip-over and slippage avoidance and of existence of a set of joint-torques that are able to sustain the robot's body weight. We show that the feasible region can be employed for the online selection of feasible footholds and CoM trajectories to achieve statically stable locomotion on rough terrains, also in presence of load-intensive tasks. Key results of our approach include the efficiency in the computation of the feasible region using an Iterative Projection (IP) algorithm and the successful execution of hardware experiments on the HyQ robot, that was able to negotiate obstacles of moderate dimensions while carrying an extra 10-kg payload. |
---|---|
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2020.2983318 |