Loading…

A Geometric Method of Hoverability Analysis for Multirotor UAVs With Upward-Oriented Rotors

This article proposes a novel geometric method to investigate whether a multirotor unmanned aerial vehicle (UAV) can achieve static hovering, i.e., hoverability. Hoverability is indispensable for a multirotor UAV to conduct its tasks safely and should be satisfied even after its rotors fail to preve...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics 2021-10, Vol.37 (5), p.1765-1779
Main Authors: Mochida, Shunsuke, Matsuda, Remma, Ibuki, Tatsuya, Sampei, Mitsuji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-21a5eb0a50abc02ba49a2ccb1858fe43645a4ee9fc51535edd786b7f337d3b3
cites cdi_FETCH-LOGICAL-c380t-21a5eb0a50abc02ba49a2ccb1858fe43645a4ee9fc51535edd786b7f337d3b3
container_end_page 1779
container_issue 5
container_start_page 1765
container_title IEEE transactions on robotics
container_volume 37
creator Mochida, Shunsuke
Matsuda, Remma
Ibuki, Tatsuya
Sampei, Mitsuji
description This article proposes a novel geometric method to investigate whether a multirotor unmanned aerial vehicle (UAV) can achieve static hovering, i.e., hoverability. Hoverability is indispensable for a multirotor UAV to conduct its tasks safely and should be satisfied even after its rotors fail to prevent accidents. The proposed geometric method reveals the relationship between the position of the center of mass (CoM) and the rotor placement of a multirotor UAV with upward-oriented rotors to satisfy hoverability. It can be applied to a multirotor UAV with any number and positioning of rotors. This article also demonstrates that our proposed method can be applied to the investigation of a robust structure against rotor failures. This investigation provides a geometric proof that a pentarotor UAV with robustness against an arbitrary rotor failure cannot be developed. Furthermore, a quantitative measure of hoverability is newly presented based on the analysis method. This enables us to design a multirotor UAV with an optimal structure by maximizing it. Finally, experimental validation is performed by using a hexrotor UAV whose CoM position is adjusted.
doi_str_mv 10.1109/TRO.2021.3064101
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2021_3064101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9393789</ieee_id><sourcerecordid>2578235786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-21a5eb0a50abc02ba49a2ccb1858fe43645a4ee9fc51535edd786b7f337d3b3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z87ibHpWgrtBRqqwcPIbs7S1Papiap0v_eLRUvMw_mveHxQ-iekgGlRD8t5rMBI4wOOMkFJfQC9agWNCMiV5edlpJlnGh1jW5iXBPChCa8hz5LPAK_hRRcjaeQVr7BvsVj_w3BVm7j0hGXO7s5Rhdx6wOeHjbJBZ86uSzfI_5waYWX-x8bmmwWHOwSNHh-usdbdNXaTYS7v91Hby_Pi-E4m8xGr8NyktVckZQxaiVUxEpiq5qwygptWV1XVEnVguC5kFYA6LaWVHIJTVOovCpazouGV7yPHs9f98F_HSAms_aH0FWOhslCMd6NvHORs6sOPsYArdkHt7XhaCgxJ4CmA2hOAM0fwC7ycI44APi3a655oTT_BeMtbL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578235786</pqid></control><display><type>article</type><title>A Geometric Method of Hoverability Analysis for Multirotor UAVs With Upward-Oriented Rotors</title><source>IEEE Xplore (Online service)</source><creator>Mochida, Shunsuke ; Matsuda, Remma ; Ibuki, Tatsuya ; Sampei, Mitsuji</creator><creatorcontrib>Mochida, Shunsuke ; Matsuda, Remma ; Ibuki, Tatsuya ; Sampei, Mitsuji</creatorcontrib><description>This article proposes a novel geometric method to investigate whether a multirotor unmanned aerial vehicle (UAV) can achieve static hovering, i.e., hoverability. Hoverability is indispensable for a multirotor UAV to conduct its tasks safely and should be satisfied even after its rotors fail to prevent accidents. The proposed geometric method reveals the relationship between the position of the center of mass (CoM) and the rotor placement of a multirotor UAV with upward-oriented rotors to satisfy hoverability. It can be applied to a multirotor UAV with any number and positioning of rotors. This article also demonstrates that our proposed method can be applied to the investigation of a robust structure against rotor failures. This investigation provides a geometric proof that a pentarotor UAV with robustness against an arbitrary rotor failure cannot be developed. Furthermore, a quantitative measure of hoverability is newly presented based on the analysis method. This enables us to design a multirotor UAV with an optimal structure by maximizing it. Finally, experimental validation is performed by using a hexrotor UAV whose CoM position is adjusted.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2021.3064101</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accident prevention ; Aerospace control ; Failure analysis ; fault tolerance ; Force ; Hovering ; Mathematical model ; Optimization ; Robustness ; Rotors ; system analysis and design ; Torque ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on robotics, 2021-10, Vol.37 (5), p.1765-1779</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-21a5eb0a50abc02ba49a2ccb1858fe43645a4ee9fc51535edd786b7f337d3b3</citedby><cites>FETCH-LOGICAL-c380t-21a5eb0a50abc02ba49a2ccb1858fe43645a4ee9fc51535edd786b7f337d3b3</cites><orcidid>0000-0001-8290-5708 ; 0000-0002-3478-8399 ; 0000-0003-1525-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9393789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mochida, Shunsuke</creatorcontrib><creatorcontrib>Matsuda, Remma</creatorcontrib><creatorcontrib>Ibuki, Tatsuya</creatorcontrib><creatorcontrib>Sampei, Mitsuji</creatorcontrib><title>A Geometric Method of Hoverability Analysis for Multirotor UAVs With Upward-Oriented Rotors</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This article proposes a novel geometric method to investigate whether a multirotor unmanned aerial vehicle (UAV) can achieve static hovering, i.e., hoverability. Hoverability is indispensable for a multirotor UAV to conduct its tasks safely and should be satisfied even after its rotors fail to prevent accidents. The proposed geometric method reveals the relationship between the position of the center of mass (CoM) and the rotor placement of a multirotor UAV with upward-oriented rotors to satisfy hoverability. It can be applied to a multirotor UAV with any number and positioning of rotors. This article also demonstrates that our proposed method can be applied to the investigation of a robust structure against rotor failures. This investigation provides a geometric proof that a pentarotor UAV with robustness against an arbitrary rotor failure cannot be developed. Furthermore, a quantitative measure of hoverability is newly presented based on the analysis method. This enables us to design a multirotor UAV with an optimal structure by maximizing it. Finally, experimental validation is performed by using a hexrotor UAV whose CoM position is adjusted.</description><subject>Accident prevention</subject><subject>Aerospace control</subject><subject>Failure analysis</subject><subject>fault tolerance</subject><subject>Force</subject><subject>Hovering</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Rotors</subject><subject>system analysis and design</subject><subject>Torque</subject><subject>Unmanned aerial vehicles</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z87ibHpWgrtBRqqwcPIbs7S1Papiap0v_eLRUvMw_mveHxQ-iekgGlRD8t5rMBI4wOOMkFJfQC9agWNCMiV5edlpJlnGh1jW5iXBPChCa8hz5LPAK_hRRcjaeQVr7BvsVj_w3BVm7j0hGXO7s5Rhdx6wOeHjbJBZ86uSzfI_5waYWX-x8bmmwWHOwSNHh-usdbdNXaTYS7v91Hby_Pi-E4m8xGr8NyktVckZQxaiVUxEpiq5qwygptWV1XVEnVguC5kFYA6LaWVHIJTVOovCpazouGV7yPHs9f98F_HSAms_aH0FWOhslCMd6NvHORs6sOPsYArdkHt7XhaCgxJ4CmA2hOAM0fwC7ycI44APi3a655oTT_BeMtbL0</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Mochida, Shunsuke</creator><creator>Matsuda, Remma</creator><creator>Ibuki, Tatsuya</creator><creator>Sampei, Mitsuji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8290-5708</orcidid><orcidid>https://orcid.org/0000-0002-3478-8399</orcidid><orcidid>https://orcid.org/0000-0003-1525-1024</orcidid></search><sort><creationdate>202110</creationdate><title>A Geometric Method of Hoverability Analysis for Multirotor UAVs With Upward-Oriented Rotors</title><author>Mochida, Shunsuke ; Matsuda, Remma ; Ibuki, Tatsuya ; Sampei, Mitsuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-21a5eb0a50abc02ba49a2ccb1858fe43645a4ee9fc51535edd786b7f337d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accident prevention</topic><topic>Aerospace control</topic><topic>Failure analysis</topic><topic>fault tolerance</topic><topic>Force</topic><topic>Hovering</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Rotors</topic><topic>system analysis and design</topic><topic>Torque</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mochida, Shunsuke</creatorcontrib><creatorcontrib>Matsuda, Remma</creatorcontrib><creatorcontrib>Ibuki, Tatsuya</creatorcontrib><creatorcontrib>Sampei, Mitsuji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mochida, Shunsuke</au><au>Matsuda, Remma</au><au>Ibuki, Tatsuya</au><au>Sampei, Mitsuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Geometric Method of Hoverability Analysis for Multirotor UAVs With Upward-Oriented Rotors</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2021-10</date><risdate>2021</risdate><volume>37</volume><issue>5</issue><spage>1765</spage><epage>1779</epage><pages>1765-1779</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This article proposes a novel geometric method to investigate whether a multirotor unmanned aerial vehicle (UAV) can achieve static hovering, i.e., hoverability. Hoverability is indispensable for a multirotor UAV to conduct its tasks safely and should be satisfied even after its rotors fail to prevent accidents. The proposed geometric method reveals the relationship between the position of the center of mass (CoM) and the rotor placement of a multirotor UAV with upward-oriented rotors to satisfy hoverability. It can be applied to a multirotor UAV with any number and positioning of rotors. This article also demonstrates that our proposed method can be applied to the investigation of a robust structure against rotor failures. This investigation provides a geometric proof that a pentarotor UAV with robustness against an arbitrary rotor failure cannot be developed. Furthermore, a quantitative measure of hoverability is newly presented based on the analysis method. This enables us to design a multirotor UAV with an optimal structure by maximizing it. Finally, experimental validation is performed by using a hexrotor UAV whose CoM position is adjusted.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2021.3064101</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8290-5708</orcidid><orcidid>https://orcid.org/0000-0002-3478-8399</orcidid><orcidid>https://orcid.org/0000-0003-1525-1024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2021-10, Vol.37 (5), p.1765-1779
issn 1552-3098
1941-0468
language eng
recordid cdi_crossref_primary_10_1109_TRO_2021_3064101
source IEEE Xplore (Online service)
subjects Accident prevention
Aerospace control
Failure analysis
fault tolerance
Force
Hovering
Mathematical model
Optimization
Robustness
Rotors
system analysis and design
Torque
Unmanned aerial vehicles
title A Geometric Method of Hoverability Analysis for Multirotor UAVs With Upward-Oriented Rotors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Geometric%20Method%20of%20Hoverability%20Analysis%20for%20Multirotor%20UAVs%20With%20Upward-Oriented%20Rotors&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Mochida,%20Shunsuke&rft.date=2021-10&rft.volume=37&rft.issue=5&rft.spage=1765&rft.epage=1779&rft.pages=1765-1779&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2021.3064101&rft_dat=%3Cproquest_cross%3E2578235786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-21a5eb0a50abc02ba49a2ccb1858fe43645a4ee9fc51535edd786b7f337d3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578235786&rft_id=info:pmid/&rft_ieee_id=9393789&rfr_iscdi=true