Loading…
An Energy-Based Control Architecture for Shared Autonomy
In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevert...
Saved in:
Published in: | IEEE transactions on robotics 2022-12, Vol.38 (6), p.3917-3935 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevertheless, it is important to correctly translate high-level decision into low-level control inputs in order to avoid an unstable behavior due to a naive implementation of the autonomy. In this article, we propose an energy-based architecture for shared autonomy that allows to reproduce as closely as possible the desired behavior, while ensuring a robust stability of the robotic system. The proposed architecture is experimentally validated in two application scenarios: shared control of a multirobot system and variable admittance control in human robot collaboration |
---|---|
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2022.3180885 |