Loading…
An Energy-Based Control Architecture for Shared Autonomy
In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevert...
Saved in:
Published in: | IEEE transactions on robotics 2022-12, Vol.38 (6), p.3917-3935 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123 |
---|---|
cites | cdi_FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123 |
container_end_page | 3935 |
container_issue | 6 |
container_start_page | 3917 |
container_title | IEEE transactions on robotics |
container_volume | 38 |
creator | Benzi, Federico Ferraguti, Federica Riggio, Giuseppe Secchi, Cristian |
description | In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevertheless, it is important to correctly translate high-level decision into low-level control inputs in order to avoid an unstable behavior due to a naive implementation of the autonomy. In this article, we propose an energy-based architecture for shared autonomy that allows to reproduce as closely as possible the desired behavior, while ensuring a robust stability of the robotic system. The proposed architecture is experimentally validated in two application scenarios: shared control of a multirobot system and variable admittance control in human robot collaboration |
doi_str_mv | 10.1109/TRO.2022.3180885 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2022_3180885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9808373</ieee_id><sourcerecordid>2747609070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562Tj90kx7X4BYWC1nPYJhPb0m5qsnvovzelxdMMvM87Aw8h9xQmlIJ-WnzOJwwYm3CqQKnqgoyoFrQEUavLvFcVKzlodU1uUtoAMKGBj4hquuKlw_hzKJ_bhK6Yhq6PYVs00a7WPdp-iFj4EIuvVRtz3gx96MLucEuufLtNeHeeY_L9-rKYvpez-dvHtJmVljHal75WQjlHgStnrZBoQbZYW2BSu4q5implfYUS61ovldAehFt6XkkGjlPGx-TxdHcfw--AqTebMMQuvzRMClmDBgmZghNlY0gpojf7uN618WAomKMfk_2Yox9z9pMrD6fKGhH_cZ1DLjn_A51HX4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609070</pqid></control><display><type>article</type><title>An Energy-Based Control Architecture for Shared Autonomy</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Benzi, Federico ; Ferraguti, Federica ; Riggio, Giuseppe ; Secchi, Cristian</creator><creatorcontrib>Benzi, Federico ; Ferraguti, Federica ; Riggio, Giuseppe ; Secchi, Cristian</creatorcontrib><description>In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevertheless, it is important to correctly translate high-level decision into low-level control inputs in order to avoid an unstable behavior due to a naive implementation of the autonomy. In this article, we propose an energy-based architecture for shared autonomy that allows to reproduce as closely as possible the desired behavior, while ensuring a robust stability of the robotic system. The proposed architecture is experimentally validated in two application scenarios: shared control of a multirobot system and variable admittance control in human robot collaboration</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2022.3180885</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomy ; Behavioral sciences ; Collaboration ; Control systems ; Couplings ; Formal method ; Human computer interaction ; Human-centered robotics ; Machine learning ; Multi-robot systems ; Multiple robots ; multirobot systems ; Optimization ; optimization and optimal control ; physical human–robot interaction ; Robot control ; Robotics ; Task analysis</subject><ispartof>IEEE transactions on robotics, 2022-12, Vol.38 (6), p.3917-3935</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123</citedby><cites>FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123</cites><orcidid>0000-0002-4989-1567 ; 0000-0002-5690-9198 ; 0000-0002-2098-0099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9808373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Benzi, Federico</creatorcontrib><creatorcontrib>Ferraguti, Federica</creatorcontrib><creatorcontrib>Riggio, Giuseppe</creatorcontrib><creatorcontrib>Secchi, Cristian</creatorcontrib><title>An Energy-Based Control Architecture for Shared Autonomy</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevertheless, it is important to correctly translate high-level decision into low-level control inputs in order to avoid an unstable behavior due to a naive implementation of the autonomy. In this article, we propose an energy-based architecture for shared autonomy that allows to reproduce as closely as possible the desired behavior, while ensuring a robust stability of the robotic system. The proposed architecture is experimentally validated in two application scenarios: shared control of a multirobot system and variable admittance control in human robot collaboration</description><subject>Autonomy</subject><subject>Behavioral sciences</subject><subject>Collaboration</subject><subject>Control systems</subject><subject>Couplings</subject><subject>Formal method</subject><subject>Human computer interaction</subject><subject>Human-centered robotics</subject><subject>Machine learning</subject><subject>Multi-robot systems</subject><subject>Multiple robots</subject><subject>multirobot systems</subject><subject>Optimization</subject><subject>optimization and optimal control</subject><subject>physical human–robot interaction</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Task analysis</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562Tj90kx7X4BYWC1nPYJhPb0m5qsnvovzelxdMMvM87Aw8h9xQmlIJ-WnzOJwwYm3CqQKnqgoyoFrQEUavLvFcVKzlodU1uUtoAMKGBj4hquuKlw_hzKJ_bhK6Yhq6PYVs00a7WPdp-iFj4EIuvVRtz3gx96MLucEuufLtNeHeeY_L9-rKYvpez-dvHtJmVljHal75WQjlHgStnrZBoQbZYW2BSu4q5implfYUS61ovldAehFt6XkkGjlPGx-TxdHcfw--AqTebMMQuvzRMClmDBgmZghNlY0gpojf7uN618WAomKMfk_2Yox9z9pMrD6fKGhH_cZ1DLjn_A51HX4g</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Benzi, Federico</creator><creator>Ferraguti, Federica</creator><creator>Riggio, Giuseppe</creator><creator>Secchi, Cristian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4989-1567</orcidid><orcidid>https://orcid.org/0000-0002-5690-9198</orcidid><orcidid>https://orcid.org/0000-0002-2098-0099</orcidid></search><sort><creationdate>202212</creationdate><title>An Energy-Based Control Architecture for Shared Autonomy</title><author>Benzi, Federico ; Ferraguti, Federica ; Riggio, Giuseppe ; Secchi, Cristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomy</topic><topic>Behavioral sciences</topic><topic>Collaboration</topic><topic>Control systems</topic><topic>Couplings</topic><topic>Formal method</topic><topic>Human computer interaction</topic><topic>Human-centered robotics</topic><topic>Machine learning</topic><topic>Multi-robot systems</topic><topic>Multiple robots</topic><topic>multirobot systems</topic><topic>Optimization</topic><topic>optimization and optimal control</topic><topic>physical human–robot interaction</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benzi, Federico</creatorcontrib><creatorcontrib>Ferraguti, Federica</creatorcontrib><creatorcontrib>Riggio, Giuseppe</creatorcontrib><creatorcontrib>Secchi, Cristian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benzi, Federico</au><au>Ferraguti, Federica</au><au>Riggio, Giuseppe</au><au>Secchi, Cristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy-Based Control Architecture for Shared Autonomy</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2022-12</date><risdate>2022</risdate><volume>38</volume><issue>6</issue><spage>3917</spage><epage>3935</epage><pages>3917-3935</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevertheless, it is important to correctly translate high-level decision into low-level control inputs in order to avoid an unstable behavior due to a naive implementation of the autonomy. In this article, we propose an energy-based architecture for shared autonomy that allows to reproduce as closely as possible the desired behavior, while ensuring a robust stability of the robotic system. The proposed architecture is experimentally validated in two application scenarios: shared control of a multirobot system and variable admittance control in human robot collaboration</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2022.3180885</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4989-1567</orcidid><orcidid>https://orcid.org/0000-0002-5690-9198</orcidid><orcidid>https://orcid.org/0000-0002-2098-0099</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2022-12, Vol.38 (6), p.3917-3935 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TRO_2022_3180885 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Autonomy Behavioral sciences Collaboration Control systems Couplings Formal method Human computer interaction Human-centered robotics Machine learning Multi-robot systems Multiple robots multirobot systems Optimization optimization and optimal control physical human–robot interaction Robot control Robotics Task analysis |
title | An Energy-Based Control Architecture for Shared Autonomy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy-Based%20Control%20Architecture%20for%20Shared%20Autonomy&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Benzi,%20Federico&rft.date=2022-12&rft.volume=38&rft.issue=6&rft.spage=3917&rft.epage=3935&rft.pages=3917-3935&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2022.3180885&rft_dat=%3Cproquest_cross%3E2747609070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747609070&rft_id=info:pmid/&rft_ieee_id=9808373&rfr_iscdi=true |