Loading…

An Energy-Based Control Architecture for Shared Autonomy

In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevert...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics 2022-12, Vol.38 (6), p.3917-3935
Main Authors: Benzi, Federico, Ferraguti, Federica, Riggio, Giuseppe, Secchi, Cristian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123
cites cdi_FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123
container_end_page 3935
container_issue 6
container_start_page 3917
container_title IEEE transactions on robotics
container_volume 38
creator Benzi, Federico
Ferraguti, Federica
Riggio, Giuseppe
Secchi, Cristian
description In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevertheless, it is important to correctly translate high-level decision into low-level control inputs in order to avoid an unstable behavior due to a naive implementation of the autonomy. In this article, we propose an energy-based architecture for shared autonomy that allows to reproduce as closely as possible the desired behavior, while ensuring a robust stability of the robotic system. The proposed architecture is experimentally validated in two application scenarios: shared control of a multirobot system and variable admittance control in human robot collaboration
doi_str_mv 10.1109/TRO.2022.3180885
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRO_2022_3180885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9808373</ieee_id><sourcerecordid>2747609070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562Tj90kx7X4BYWC1nPYJhPb0m5qsnvovzelxdMMvM87Aw8h9xQmlIJ-WnzOJwwYm3CqQKnqgoyoFrQEUavLvFcVKzlodU1uUtoAMKGBj4hquuKlw_hzKJ_bhK6Yhq6PYVs00a7WPdp-iFj4EIuvVRtz3gx96MLucEuufLtNeHeeY_L9-rKYvpez-dvHtJmVljHal75WQjlHgStnrZBoQbZYW2BSu4q5implfYUS61ovldAehFt6XkkGjlPGx-TxdHcfw--AqTebMMQuvzRMClmDBgmZghNlY0gpojf7uN618WAomKMfk_2Yox9z9pMrD6fKGhH_cZ1DLjn_A51HX4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609070</pqid></control><display><type>article</type><title>An Energy-Based Control Architecture for Shared Autonomy</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Benzi, Federico ; Ferraguti, Federica ; Riggio, Giuseppe ; Secchi, Cristian</creator><creatorcontrib>Benzi, Federico ; Ferraguti, Federica ; Riggio, Giuseppe ; Secchi, Cristian</creatorcontrib><description>In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevertheless, it is important to correctly translate high-level decision into low-level control inputs in order to avoid an unstable behavior due to a naive implementation of the autonomy. In this article, we propose an energy-based architecture for shared autonomy that allows to reproduce as closely as possible the desired behavior, while ensuring a robust stability of the robotic system. The proposed architecture is experimentally validated in two application scenarios: shared control of a multirobot system and variable admittance control in human robot collaboration</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2022.3180885</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomy ; Behavioral sciences ; Collaboration ; Control systems ; Couplings ; Formal method ; Human computer interaction ; Human-centered robotics ; Machine learning ; Multi-robot systems ; Multiple robots ; multirobot systems ; Optimization ; optimization and optimal control ; physical human–robot interaction ; Robot control ; Robotics ; Task analysis</subject><ispartof>IEEE transactions on robotics, 2022-12, Vol.38 (6), p.3917-3935</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123</citedby><cites>FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123</cites><orcidid>0000-0002-4989-1567 ; 0000-0002-5690-9198 ; 0000-0002-2098-0099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9808373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Benzi, Federico</creatorcontrib><creatorcontrib>Ferraguti, Federica</creatorcontrib><creatorcontrib>Riggio, Giuseppe</creatorcontrib><creatorcontrib>Secchi, Cristian</creatorcontrib><title>An Energy-Based Control Architecture for Shared Autonomy</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevertheless, it is important to correctly translate high-level decision into low-level control inputs in order to avoid an unstable behavior due to a naive implementation of the autonomy. In this article, we propose an energy-based architecture for shared autonomy that allows to reproduce as closely as possible the desired behavior, while ensuring a robust stability of the robotic system. The proposed architecture is experimentally validated in two application scenarios: shared control of a multirobot system and variable admittance control in human robot collaboration</description><subject>Autonomy</subject><subject>Behavioral sciences</subject><subject>Collaboration</subject><subject>Control systems</subject><subject>Couplings</subject><subject>Formal method</subject><subject>Human computer interaction</subject><subject>Human-centered robotics</subject><subject>Machine learning</subject><subject>Multi-robot systems</subject><subject>Multiple robots</subject><subject>multirobot systems</subject><subject>Optimization</subject><subject>optimization and optimal control</subject><subject>physical human–robot interaction</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Task analysis</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562Tj90kx7X4BYWC1nPYJhPb0m5qsnvovzelxdMMvM87Aw8h9xQmlIJ-WnzOJwwYm3CqQKnqgoyoFrQEUavLvFcVKzlodU1uUtoAMKGBj4hquuKlw_hzKJ_bhK6Yhq6PYVs00a7WPdp-iFj4EIuvVRtz3gx96MLucEuufLtNeHeeY_L9-rKYvpez-dvHtJmVljHal75WQjlHgStnrZBoQbZYW2BSu4q5implfYUS61ovldAehFt6XkkGjlPGx-TxdHcfw--AqTebMMQuvzRMClmDBgmZghNlY0gpojf7uN618WAomKMfk_2Yox9z9pMrD6fKGhH_cZ1DLjn_A51HX4g</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Benzi, Federico</creator><creator>Ferraguti, Federica</creator><creator>Riggio, Giuseppe</creator><creator>Secchi, Cristian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4989-1567</orcidid><orcidid>https://orcid.org/0000-0002-5690-9198</orcidid><orcidid>https://orcid.org/0000-0002-2098-0099</orcidid></search><sort><creationdate>202212</creationdate><title>An Energy-Based Control Architecture for Shared Autonomy</title><author>Benzi, Federico ; Ferraguti, Federica ; Riggio, Giuseppe ; Secchi, Cristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomy</topic><topic>Behavioral sciences</topic><topic>Collaboration</topic><topic>Control systems</topic><topic>Couplings</topic><topic>Formal method</topic><topic>Human computer interaction</topic><topic>Human-centered robotics</topic><topic>Machine learning</topic><topic>Multi-robot systems</topic><topic>Multiple robots</topic><topic>multirobot systems</topic><topic>Optimization</topic><topic>optimization and optimal control</topic><topic>physical human–robot interaction</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benzi, Federico</creatorcontrib><creatorcontrib>Ferraguti, Federica</creatorcontrib><creatorcontrib>Riggio, Giuseppe</creatorcontrib><creatorcontrib>Secchi, Cristian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benzi, Federico</au><au>Ferraguti, Federica</au><au>Riggio, Giuseppe</au><au>Secchi, Cristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy-Based Control Architecture for Shared Autonomy</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2022-12</date><risdate>2022</risdate><volume>38</volume><issue>6</issue><spage>3917</spage><epage>3935</epage><pages>3917-3935</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>In robotic applications where the autonomy is shared between the human and the robot, the autonomous behavior of the robotic system is determined considering mainly the task to be executed and the data collected from the environment using, e.g., formal methods and machine learning techniques. Nevertheless, it is important to correctly translate high-level decision into low-level control inputs in order to avoid an unstable behavior due to a naive implementation of the autonomy. In this article, we propose an energy-based architecture for shared autonomy that allows to reproduce as closely as possible the desired behavior, while ensuring a robust stability of the robotic system. The proposed architecture is experimentally validated in two application scenarios: shared control of a multirobot system and variable admittance control in human robot collaboration</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2022.3180885</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4989-1567</orcidid><orcidid>https://orcid.org/0000-0002-5690-9198</orcidid><orcidid>https://orcid.org/0000-0002-2098-0099</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2022-12, Vol.38 (6), p.3917-3935
issn 1552-3098
1941-0468
language eng
recordid cdi_crossref_primary_10_1109_TRO_2022_3180885
source IEEE Electronic Library (IEL) Journals
subjects Autonomy
Behavioral sciences
Collaboration
Control systems
Couplings
Formal method
Human computer interaction
Human-centered robotics
Machine learning
Multi-robot systems
Multiple robots
multirobot systems
Optimization
optimization and optimal control
physical human–robot interaction
Robot control
Robotics
Task analysis
title An Energy-Based Control Architecture for Shared Autonomy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy-Based%20Control%20Architecture%20for%20Shared%20Autonomy&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Benzi,%20Federico&rft.date=2022-12&rft.volume=38&rft.issue=6&rft.spage=3917&rft.epage=3935&rft.pages=3917-3935&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2022.3180885&rft_dat=%3Cproquest_cross%3E2747609070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-f6848dd1038dcc47ec07ae6c0279d52d5198cf5e7e669b849f04dbf35720d3123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747609070&rft_id=info:pmid/&rft_ieee_id=9808373&rfr_iscdi=true