Loading…

Restless Bandits for Metacognitive Spectrum Sharing With Software Defined Radar

Recent advances in cognitive radar technologies have proposed solutions to the problem of radio frequency (RF) spectral congestion. Different strategies for radar spectrum sharing have been demonstrated to perform more efficiently in particular RF interference (RFI) conditions. These RFI conditions...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on radar systems 2023, Vol.1, p.401-412
Main Authors: Kovarskiy, Jacob A., Martone, Anthony F., Narayanan, Ram M., Sherbondy, Kelly D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1094-b8aa676a866d0f9c5ed7381e0dcc5b4474be600a294f77429a990553f9527ce53
cites cdi_FETCH-LOGICAL-c1094-b8aa676a866d0f9c5ed7381e0dcc5b4474be600a294f77429a990553f9527ce53
container_end_page 412
container_issue
container_start_page 401
container_title IEEE transactions on radar systems
container_volume 1
creator Kovarskiy, Jacob A.
Martone, Anthony F.
Narayanan, Ram M.
Sherbondy, Kelly D.
description Recent advances in cognitive radar technologies have proposed solutions to the problem of radio frequency (RF) spectral congestion. Different strategies for radar spectrum sharing have been demonstrated to perform more efficiently in particular RF interference (RFI) conditions. These RFI conditions can change abruptly based on rapidly varying demands for spectral resources, thus degrading spectrum sharing efficiency when using one single strategy. This paper presents a "metacognition" framework to enable a cognitive radar to adapt strategies for spectrum sharing as RFI scenarios change. Here, our metacognition framework employs a restless bandit model to select from three radar spectrum sharing strategies. In prior work, these three strategies have been individually implemented on software defined radios (SDRs) and characterized in terms of spectrum sharing efficiency. Our manuscript compares the spectrum sharing efficiency of restless bandit algorithms to select from three known cognitive radar implementations to optimize performance in changing RFI conditions. Experiments consist of a real-time SDR implementation of this metacognition framework with emulated RFI signals that change over time. Using SW UCB1-tuned shows up to 8 dB improvement in average signal-to-interference plus noise ratio (SINR) and up to 13 MHz improvement in average bandwidth utilization compared to worst-case from the considered restless bandit algorithms.
doi_str_mv 10.1109/TRS.2023.3306309
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TRS_2023_3306309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10224344</ieee_id><sourcerecordid>10_1109_TRS_2023_3306309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1094-b8aa676a866d0f9c5ed7381e0dcc5b4474be600a294f77429a990553f9527ce53</originalsourceid><addsrcrecordid>eNpNkE1PAjEYhBujiQS5e_DQP7D4bj-3R8XPBEPCYjxuSvct1MAuaavGfy8ED5xmDjOTyUPIdQnjsgRzu5jXYwaMjzkHxcGckQGrOCs0l_r8xF-SUUqfAMCMKiXAgMzmmPIGU6L3tmtDTtT3kb5htq5fdSGHb6T1Dl2OX1tar20M3Yp-hLymde_zj41IH9CHDls6t62NV-TC203C0b8OyfvT42LyUkxnz6-Tu2nh9n9FsaysVVrZSqkWvHESW82rEqF1Ti6F0GKJCsAyI7zWghlrDEjJvZFMO5R8SOC462KfUkTf7GLY2vjblNAcmDR7Js2BSfPPZF-5OVYCIp7EGRNcCP4H-WhdCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Restless Bandits for Metacognitive Spectrum Sharing With Software Defined Radar</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kovarskiy, Jacob A. ; Martone, Anthony F. ; Narayanan, Ram M. ; Sherbondy, Kelly D.</creator><creatorcontrib>Kovarskiy, Jacob A. ; Martone, Anthony F. ; Narayanan, Ram M. ; Sherbondy, Kelly D.</creatorcontrib><description>Recent advances in cognitive radar technologies have proposed solutions to the problem of radio frequency (RF) spectral congestion. Different strategies for radar spectrum sharing have been demonstrated to perform more efficiently in particular RF interference (RFI) conditions. These RFI conditions can change abruptly based on rapidly varying demands for spectral resources, thus degrading spectrum sharing efficiency when using one single strategy. This paper presents a "metacognition" framework to enable a cognitive radar to adapt strategies for spectrum sharing as RFI scenarios change. Here, our metacognition framework employs a restless bandit model to select from three radar spectrum sharing strategies. In prior work, these three strategies have been individually implemented on software defined radios (SDRs) and characterized in terms of spectrum sharing efficiency. Our manuscript compares the spectrum sharing efficiency of restless bandit algorithms to select from three known cognitive radar implementations to optimize performance in changing RFI conditions. Experiments consist of a real-time SDR implementation of this metacognition framework with emulated RFI signals that change over time. Using SW UCB1-tuned shows up to 8 dB improvement in average signal-to-interference plus noise ratio (SINR) and up to 13 MHz improvement in average bandwidth utilization compared to worst-case from the considered restless bandit algorithms.</description><identifier>ISSN: 2832-7357</identifier><identifier>EISSN: 2832-7357</identifier><identifier>DOI: 10.1109/TRS.2023.3306309</identifier><identifier>CODEN: ITRSBN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognitive radar ; dynamic spectrum access ; Long Term Evolution ; LTE ; Metacognition ; Radio frequency ; Real-time systems ; Reinforcement learning ; Software radio</subject><ispartof>IEEE transactions on radar systems, 2023, Vol.1, p.401-412</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1094-b8aa676a866d0f9c5ed7381e0dcc5b4474be600a294f77429a990553f9527ce53</citedby><cites>FETCH-LOGICAL-c1094-b8aa676a866d0f9c5ed7381e0dcc5b4474be600a294f77429a990553f9527ce53</cites><orcidid>0000-0003-3568-2702 ; 0000-0001-9596-5400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10224344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Kovarskiy, Jacob A.</creatorcontrib><creatorcontrib>Martone, Anthony F.</creatorcontrib><creatorcontrib>Narayanan, Ram M.</creatorcontrib><creatorcontrib>Sherbondy, Kelly D.</creatorcontrib><title>Restless Bandits for Metacognitive Spectrum Sharing With Software Defined Radar</title><title>IEEE transactions on radar systems</title><addtitle>TRS</addtitle><description>Recent advances in cognitive radar technologies have proposed solutions to the problem of radio frequency (RF) spectral congestion. Different strategies for radar spectrum sharing have been demonstrated to perform more efficiently in particular RF interference (RFI) conditions. These RFI conditions can change abruptly based on rapidly varying demands for spectral resources, thus degrading spectrum sharing efficiency when using one single strategy. This paper presents a "metacognition" framework to enable a cognitive radar to adapt strategies for spectrum sharing as RFI scenarios change. Here, our metacognition framework employs a restless bandit model to select from three radar spectrum sharing strategies. In prior work, these three strategies have been individually implemented on software defined radios (SDRs) and characterized in terms of spectrum sharing efficiency. Our manuscript compares the spectrum sharing efficiency of restless bandit algorithms to select from three known cognitive radar implementations to optimize performance in changing RFI conditions. Experiments consist of a real-time SDR implementation of this metacognition framework with emulated RFI signals that change over time. Using SW UCB1-tuned shows up to 8 dB improvement in average signal-to-interference plus noise ratio (SINR) and up to 13 MHz improvement in average bandwidth utilization compared to worst-case from the considered restless bandit algorithms.</description><subject>Cognitive radar</subject><subject>dynamic spectrum access</subject><subject>Long Term Evolution</subject><subject>LTE</subject><subject>Metacognition</subject><subject>Radio frequency</subject><subject>Real-time systems</subject><subject>Reinforcement learning</subject><subject>Software radio</subject><issn>2832-7357</issn><issn>2832-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEYhBujiQS5e_DQP7D4bj-3R8XPBEPCYjxuSvct1MAuaavGfy8ED5xmDjOTyUPIdQnjsgRzu5jXYwaMjzkHxcGckQGrOCs0l_r8xF-SUUqfAMCMKiXAgMzmmPIGU6L3tmtDTtT3kb5htq5fdSGHb6T1Dl2OX1tar20M3Yp-hLymde_zj41IH9CHDls6t62NV-TC203C0b8OyfvT42LyUkxnz6-Tu2nh9n9FsaysVVrZSqkWvHESW82rEqF1Ti6F0GKJCsAyI7zWghlrDEjJvZFMO5R8SOC462KfUkTf7GLY2vjblNAcmDR7Js2BSfPPZF-5OVYCIp7EGRNcCP4H-WhdCQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kovarskiy, Jacob A.</creator><creator>Martone, Anthony F.</creator><creator>Narayanan, Ram M.</creator><creator>Sherbondy, Kelly D.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3568-2702</orcidid><orcidid>https://orcid.org/0000-0001-9596-5400</orcidid></search><sort><creationdate>2023</creationdate><title>Restless Bandits for Metacognitive Spectrum Sharing With Software Defined Radar</title><author>Kovarskiy, Jacob A. ; Martone, Anthony F. ; Narayanan, Ram M. ; Sherbondy, Kelly D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1094-b8aa676a866d0f9c5ed7381e0dcc5b4474be600a294f77429a990553f9527ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cognitive radar</topic><topic>dynamic spectrum access</topic><topic>Long Term Evolution</topic><topic>LTE</topic><topic>Metacognition</topic><topic>Radio frequency</topic><topic>Real-time systems</topic><topic>Reinforcement learning</topic><topic>Software radio</topic><toplevel>online_resources</toplevel><creatorcontrib>Kovarskiy, Jacob A.</creatorcontrib><creatorcontrib>Martone, Anthony F.</creatorcontrib><creatorcontrib>Narayanan, Ram M.</creatorcontrib><creatorcontrib>Sherbondy, Kelly D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on radar systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovarskiy, Jacob A.</au><au>Martone, Anthony F.</au><au>Narayanan, Ram M.</au><au>Sherbondy, Kelly D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restless Bandits for Metacognitive Spectrum Sharing With Software Defined Radar</atitle><jtitle>IEEE transactions on radar systems</jtitle><stitle>TRS</stitle><date>2023</date><risdate>2023</risdate><volume>1</volume><spage>401</spage><epage>412</epage><pages>401-412</pages><issn>2832-7357</issn><eissn>2832-7357</eissn><coden>ITRSBN</coden><abstract>Recent advances in cognitive radar technologies have proposed solutions to the problem of radio frequency (RF) spectral congestion. Different strategies for radar spectrum sharing have been demonstrated to perform more efficiently in particular RF interference (RFI) conditions. These RFI conditions can change abruptly based on rapidly varying demands for spectral resources, thus degrading spectrum sharing efficiency when using one single strategy. This paper presents a "metacognition" framework to enable a cognitive radar to adapt strategies for spectrum sharing as RFI scenarios change. Here, our metacognition framework employs a restless bandit model to select from three radar spectrum sharing strategies. In prior work, these three strategies have been individually implemented on software defined radios (SDRs) and characterized in terms of spectrum sharing efficiency. Our manuscript compares the spectrum sharing efficiency of restless bandit algorithms to select from three known cognitive radar implementations to optimize performance in changing RFI conditions. Experiments consist of a real-time SDR implementation of this metacognition framework with emulated RFI signals that change over time. Using SW UCB1-tuned shows up to 8 dB improvement in average signal-to-interference plus noise ratio (SINR) and up to 13 MHz improvement in average bandwidth utilization compared to worst-case from the considered restless bandit algorithms.</abstract><pub>IEEE</pub><doi>10.1109/TRS.2023.3306309</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3568-2702</orcidid><orcidid>https://orcid.org/0000-0001-9596-5400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2832-7357
ispartof IEEE transactions on radar systems, 2023, Vol.1, p.401-412
issn 2832-7357
2832-7357
language eng
recordid cdi_crossref_primary_10_1109_TRS_2023_3306309
source IEEE Electronic Library (IEL) Journals
subjects Cognitive radar
dynamic spectrum access
Long Term Evolution
LTE
Metacognition
Radio frequency
Real-time systems
Reinforcement learning
Software radio
title Restless Bandits for Metacognitive Spectrum Sharing With Software Defined Radar
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restless%20Bandits%20for%20Metacognitive%20Spectrum%20Sharing%20With%20Software%20Defined%20Radar&rft.jtitle=IEEE%20transactions%20on%20radar%20systems&rft.au=Kovarskiy,%20Jacob%20A.&rft.date=2023&rft.volume=1&rft.spage=401&rft.epage=412&rft.pages=401-412&rft.issn=2832-7357&rft.eissn=2832-7357&rft.coden=ITRSBN&rft_id=info:doi/10.1109/TRS.2023.3306309&rft_dat=%3Ccrossref_ieee_%3E10_1109_TRS_2023_3306309%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1094-b8aa676a866d0f9c5ed7381e0dcc5b4474be600a294f77429a990553f9527ce53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10224344&rfr_iscdi=true