Loading…

Parameter Inference in a Hybrid System With Masked Data

We consider statistical inference for two fundamental hybrid systems based on masked data: series-parallel, and parallel-series. Under constant, and linear hazard functions for component life, we present the maximum likelihood, and interval estimation of parameters of interest. Simulation studies ar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on reliability 2015-06, Vol.64 (2), p.636-644
Main Authors: Wang, Ronghua, Sha, Naijun, Gu, Beiqing, Xu, Xiaoling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-b4c8dfe479255969cb1c6ab4b9f353515dfadc1b035eacc83f07180a77401e6e3
cites cdi_FETCH-LOGICAL-c442t-b4c8dfe479255969cb1c6ab4b9f353515dfadc1b035eacc83f07180a77401e6e3
container_end_page 644
container_issue 2
container_start_page 636
container_title IEEE transactions on reliability
container_volume 64
creator Wang, Ronghua
Sha, Naijun
Gu, Beiqing
Xu, Xiaoling
description We consider statistical inference for two fundamental hybrid systems based on masked data: series-parallel, and parallel-series. Under constant, and linear hazard functions for component life, we present the maximum likelihood, and interval estimation of parameters of interest. Simulation studies are performed to demonstrate the efficiency of the methods.
doi_str_mv 10.1109/TR.2015.2412537
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TR_2015_2412537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7070780</ieee_id><sourcerecordid>10_1109_TR_2015_2412537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-b4c8dfe479255969cb1c6ab4b9f353515dfadc1b035eacc83f07180a77401e6e3</originalsourceid><addsrcrecordid>eNo9j01LxDAYhIMoWFfPHrzkD7SbNx9NcpT1YxdWlLXisaTpG6zaKkkv_fd22UXmMAzMDDyEXAMrAJhdVruCM1AFl8CV0CckA6VMDprDKckYA5Nbxe05uUjpc45SWpMR_eKi63HESDdDwIiDR9oN1NH11MSupa9TGrGn7934QZ9c-sKW3rnRXZKz4L4TXh19Qd4e7qvVOt8-P25Wt9vcS8nHvJHetAGltlwpW1rfgC9dIxsbhBIKVBtc66FhQqHz3ojANBjmtJYMsESxIMvDr48_KUUM9W_sehenGli9566rXb3nro_c8-LmsOgQ8b-t2SzDxB_V0VK5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parameter Inference in a Hybrid System With Masked Data</title><source>IEEE Xplore (Online service)</source><creator>Wang, Ronghua ; Sha, Naijun ; Gu, Beiqing ; Xu, Xiaoling</creator><creatorcontrib>Wang, Ronghua ; Sha, Naijun ; Gu, Beiqing ; Xu, Xiaoling</creatorcontrib><description>We consider statistical inference for two fundamental hybrid systems based on masked data: series-parallel, and parallel-series. Under constant, and linear hazard functions for component life, we present the maximum likelihood, and interval estimation of parameters of interest. Simulation studies are performed to demonstrate the efficiency of the methods.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2015.2412537</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Density functional theory ; Hazards ; Interval estimation ; masked data ; Maximum likelihood estimation ; parallel-series system ; Probability ; Reliability ; series-parallel system ; Technological innovation</subject><ispartof>IEEE transactions on reliability, 2015-06, Vol.64 (2), p.636-644</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-b4c8dfe479255969cb1c6ab4b9f353515dfadc1b035eacc83f07180a77401e6e3</citedby><cites>FETCH-LOGICAL-c442t-b4c8dfe479255969cb1c6ab4b9f353515dfadc1b035eacc83f07180a77401e6e3</cites><orcidid>0000-0001-6480-4233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7070780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Wang, Ronghua</creatorcontrib><creatorcontrib>Sha, Naijun</creatorcontrib><creatorcontrib>Gu, Beiqing</creatorcontrib><creatorcontrib>Xu, Xiaoling</creatorcontrib><title>Parameter Inference in a Hybrid System With Masked Data</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>We consider statistical inference for two fundamental hybrid systems based on masked data: series-parallel, and parallel-series. Under constant, and linear hazard functions for component life, we present the maximum likelihood, and interval estimation of parameters of interest. Simulation studies are performed to demonstrate the efficiency of the methods.</description><subject>Density functional theory</subject><subject>Hazards</subject><subject>Interval estimation</subject><subject>masked data</subject><subject>Maximum likelihood estimation</subject><subject>parallel-series system</subject><subject>Probability</subject><subject>Reliability</subject><subject>series-parallel system</subject><subject>Technological innovation</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAYhIMoWFfPHrzkD7SbNx9NcpT1YxdWlLXisaTpG6zaKkkv_fd22UXmMAzMDDyEXAMrAJhdVruCM1AFl8CV0CckA6VMDprDKckYA5Nbxe05uUjpc45SWpMR_eKi63HESDdDwIiDR9oN1NH11MSupa9TGrGn7934QZ9c-sKW3rnRXZKz4L4TXh19Qd4e7qvVOt8-P25Wt9vcS8nHvJHetAGltlwpW1rfgC9dIxsbhBIKVBtc66FhQqHz3ojANBjmtJYMsESxIMvDr48_KUUM9W_sehenGli9566rXb3nro_c8-LmsOgQ8b-t2SzDxB_V0VK5</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Wang, Ronghua</creator><creator>Sha, Naijun</creator><creator>Gu, Beiqing</creator><creator>Xu, Xiaoling</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6480-4233</orcidid></search><sort><creationdate>20150601</creationdate><title>Parameter Inference in a Hybrid System With Masked Data</title><author>Wang, Ronghua ; Sha, Naijun ; Gu, Beiqing ; Xu, Xiaoling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-b4c8dfe479255969cb1c6ab4b9f353515dfadc1b035eacc83f07180a77401e6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Density functional theory</topic><topic>Hazards</topic><topic>Interval estimation</topic><topic>masked data</topic><topic>Maximum likelihood estimation</topic><topic>parallel-series system</topic><topic>Probability</topic><topic>Reliability</topic><topic>series-parallel system</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ronghua</creatorcontrib><creatorcontrib>Sha, Naijun</creatorcontrib><creatorcontrib>Gu, Beiqing</creatorcontrib><creatorcontrib>Xu, Xiaoling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ronghua</au><au>Sha, Naijun</au><au>Gu, Beiqing</au><au>Xu, Xiaoling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Inference in a Hybrid System With Masked Data</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>64</volume><issue>2</issue><spage>636</spage><epage>644</epage><pages>636-644</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>We consider statistical inference for two fundamental hybrid systems based on masked data: series-parallel, and parallel-series. Under constant, and linear hazard functions for component life, we present the maximum likelihood, and interval estimation of parameters of interest. Simulation studies are performed to demonstrate the efficiency of the methods.</abstract><pub>IEEE</pub><doi>10.1109/TR.2015.2412537</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6480-4233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2015-06, Vol.64 (2), p.636-644
issn 0018-9529
1558-1721
language eng
recordid cdi_crossref_primary_10_1109_TR_2015_2412537
source IEEE Xplore (Online service)
subjects Density functional theory
Hazards
Interval estimation
masked data
Maximum likelihood estimation
parallel-series system
Probability
Reliability
series-parallel system
Technological innovation
title Parameter Inference in a Hybrid System With Masked Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Inference%20in%20a%20Hybrid%20System%20With%20Masked%20Data&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Wang,%20Ronghua&rft.date=2015-06-01&rft.volume=64&rft.issue=2&rft.spage=636&rft.epage=644&rft.pages=636-644&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2015.2412537&rft_dat=%3Ccrossref_ieee_%3E10_1109_TR_2015_2412537%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-b4c8dfe479255969cb1c6ab4b9f353515dfadc1b035eacc83f07180a77401e6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7070780&rfr_iscdi=true