Loading…

Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling

Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize deg...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on reliability 2023-03, Vol.72 (1), p.27-36
Main Authors: Yan, Tongtong, Wang, Yuting, Xia, Tangbin, Hou, Bingchang, Xi, Lifeng, Wang, Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93
cites cdi_FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93
container_end_page 36
container_issue 1
container_start_page 27
container_title IEEE transactions on reliability
container_volume 72
creator Yan, Tongtong
Wang, Yuting
Xia, Tangbin
Hou, Bingchang
Xi, Lifeng
Wang, Dong
description Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize degradation trajectory tracking and fault diagnosis at a same time. First, considering using vibration data as health monitoring signals, globally normal and abnormal spectral lines can be obtained based on the fast Fourier transform and they are, respectively, characterized as individually flexible convex hulls. Subsequently, a sparse and flexible convex-hull representation degradation model is constructed by simultaneously finding the closest pair of samples and its sparse regularization between normal and abnormal convex hulls. Finally, a health indicator can be developed for early fault detection and degradation trajectory tracking during a machine life cycle. Meanwhile, quick fault diagnosis can be realized by finding a difference between the optimal closest samples in a normal convex hull and an abnormal convex hull. Two experimental cases are used to show the effectiveness and superiority of the proposed model to recent existing works.
doi_str_mv 10.1109/TR.2022.3164976
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TR_2022_3164976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9761974</ieee_id><sourcerecordid>2781846458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93</originalsourceid><addsrcrecordid>eNo9kEtLw0AQxxdRsFbPHrwEPKfdV_ZxlGqt0FKo9bxsspOaErNxN5X67U1J8TTMzP8BP4TuCZ4QgvV0u5lQTOmEEcG1FBdoRLJMpURScolGGBOV6ozqa3QT475fOddqhNbvrQ0REtu4ZF7DscprSGa--YFjujjUdbKBNkCEprNd5Zuk9CFZ2eKzaiB5hl2wbrivvIO6ana36Kq0dYS78xyjj_nLdrZIl-vXt9nTMi2o0l0KVrlMMUsEk8TlmWRSsRJLXLKCusIxWQqby4LmWUlFzrnLpbDCMgKCsEKzMXocctvgvw8QO7P3h9D0lYZKRRQXvM8fo-mgKoKPMUBp2lB92fBrCDYnama7MSdq5kytdzwMjgoA_tX9h2jJ2R8Rjmgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781846458</pqid></control><display><type>article</type><title>Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yan, Tongtong ; Wang, Yuting ; Xia, Tangbin ; Hou, Bingchang ; Xi, Lifeng ; Wang, Dong</creator><creatorcontrib>Yan, Tongtong ; Wang, Yuting ; Xia, Tangbin ; Hou, Bingchang ; Xi, Lifeng ; Wang, Dong</creatorcontrib><description>Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize degradation trajectory tracking and fault diagnosis at a same time. First, considering using vibration data as health monitoring signals, globally normal and abnormal spectral lines can be obtained based on the fast Fourier transform and they are, respectively, characterized as individually flexible convex hulls. Subsequently, a sparse and flexible convex-hull representation degradation model is constructed by simultaneously finding the closest pair of samples and its sparse regularization between normal and abnormal convex hulls. Finally, a health indicator can be developed for early fault detection and degradation trajectory tracking during a machine life cycle. Meanwhile, quick fault diagnosis can be realized by finding a difference between the optimal closest samples in a normal convex hull and an abnormal convex hull. Two experimental cases are used to show the effectiveness and superiority of the proposed model to recent existing works.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2022.3164976</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convex-hulls ; Convexity ; Degradation ; Fast Fourier transformations ; Fault detection ; Fault diagnosis ; Fourier transforms ; health indicator (HI) ; Hidden Markov models ; Hulls ; Line spectra ; machine fault diagnosis ; Modelling ; Regularization ; Representations ; Signal monitoring ; sparse representation ; spectral lines ; Time-domain analysis ; Tracking ; Trajectory tracking ; Vibration monitoring ; Vibrations</subject><ispartof>IEEE transactions on reliability, 2023-03, Vol.72 (1), p.27-36</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93</citedby><cites>FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93</cites><orcidid>0000-0003-4872-4860 ; 0000-0001-9121-1716 ; 0000-0002-6957-0293 ; 0000-0002-7241-4371 ; 0000-0002-3757-0889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9761974$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Yan, Tongtong</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Xia, Tangbin</creatorcontrib><creatorcontrib>Hou, Bingchang</creatorcontrib><creatorcontrib>Xi, Lifeng</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><title>Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize degradation trajectory tracking and fault diagnosis at a same time. First, considering using vibration data as health monitoring signals, globally normal and abnormal spectral lines can be obtained based on the fast Fourier transform and they are, respectively, characterized as individually flexible convex hulls. Subsequently, a sparse and flexible convex-hull representation degradation model is constructed by simultaneously finding the closest pair of samples and its sparse regularization between normal and abnormal convex hulls. Finally, a health indicator can be developed for early fault detection and degradation trajectory tracking during a machine life cycle. Meanwhile, quick fault diagnosis can be realized by finding a difference between the optimal closest samples in a normal convex hull and an abnormal convex hull. Two experimental cases are used to show the effectiveness and superiority of the proposed model to recent existing works.</description><subject>Convex-hulls</subject><subject>Convexity</subject><subject>Degradation</subject><subject>Fast Fourier transformations</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Fourier transforms</subject><subject>health indicator (HI)</subject><subject>Hidden Markov models</subject><subject>Hulls</subject><subject>Line spectra</subject><subject>machine fault diagnosis</subject><subject>Modelling</subject><subject>Regularization</subject><subject>Representations</subject><subject>Signal monitoring</subject><subject>sparse representation</subject><subject>spectral lines</subject><subject>Time-domain analysis</subject><subject>Tracking</subject><subject>Trajectory tracking</subject><subject>Vibration monitoring</subject><subject>Vibrations</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AQxxdRsFbPHrwEPKfdV_ZxlGqt0FKo9bxsspOaErNxN5X67U1J8TTMzP8BP4TuCZ4QgvV0u5lQTOmEEcG1FBdoRLJMpURScolGGBOV6ozqa3QT475fOddqhNbvrQ0REtu4ZF7DscprSGa--YFjujjUdbKBNkCEprNd5Zuk9CFZ2eKzaiB5hl2wbrivvIO6ana36Kq0dYS78xyjj_nLdrZIl-vXt9nTMi2o0l0KVrlMMUsEk8TlmWRSsRJLXLKCusIxWQqby4LmWUlFzrnLpbDCMgKCsEKzMXocctvgvw8QO7P3h9D0lYZKRRQXvM8fo-mgKoKPMUBp2lB92fBrCDYnama7MSdq5kytdzwMjgoA_tX9h2jJ2R8Rjmgs</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Yan, Tongtong</creator><creator>Wang, Yuting</creator><creator>Xia, Tangbin</creator><creator>Hou, Bingchang</creator><creator>Xi, Lifeng</creator><creator>Wang, Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4872-4860</orcidid><orcidid>https://orcid.org/0000-0001-9121-1716</orcidid><orcidid>https://orcid.org/0000-0002-6957-0293</orcidid><orcidid>https://orcid.org/0000-0002-7241-4371</orcidid><orcidid>https://orcid.org/0000-0002-3757-0889</orcidid></search><sort><creationdate>202303</creationdate><title>Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling</title><author>Yan, Tongtong ; Wang, Yuting ; Xia, Tangbin ; Hou, Bingchang ; Xi, Lifeng ; Wang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convex-hulls</topic><topic>Convexity</topic><topic>Degradation</topic><topic>Fast Fourier transformations</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Fourier transforms</topic><topic>health indicator (HI)</topic><topic>Hidden Markov models</topic><topic>Hulls</topic><topic>Line spectra</topic><topic>machine fault diagnosis</topic><topic>Modelling</topic><topic>Regularization</topic><topic>Representations</topic><topic>Signal monitoring</topic><topic>sparse representation</topic><topic>spectral lines</topic><topic>Time-domain analysis</topic><topic>Tracking</topic><topic>Trajectory tracking</topic><topic>Vibration monitoring</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Tongtong</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Xia, Tangbin</creatorcontrib><creatorcontrib>Hou, Bingchang</creatorcontrib><creatorcontrib>Xi, Lifeng</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Tongtong</au><au>Wang, Yuting</au><au>Xia, Tangbin</au><au>Hou, Bingchang</au><au>Xi, Lifeng</au><au>Wang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2023-03</date><risdate>2023</risdate><volume>72</volume><issue>1</issue><spage>27</spage><epage>36</epage><pages>27-36</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize degradation trajectory tracking and fault diagnosis at a same time. First, considering using vibration data as health monitoring signals, globally normal and abnormal spectral lines can be obtained based on the fast Fourier transform and they are, respectively, characterized as individually flexible convex hulls. Subsequently, a sparse and flexible convex-hull representation degradation model is constructed by simultaneously finding the closest pair of samples and its sparse regularization between normal and abnormal convex hulls. Finally, a health indicator can be developed for early fault detection and degradation trajectory tracking during a machine life cycle. Meanwhile, quick fault diagnosis can be realized by finding a difference between the optimal closest samples in a normal convex hull and an abnormal convex hull. Two experimental cases are used to show the effectiveness and superiority of the proposed model to recent existing works.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2022.3164976</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4872-4860</orcidid><orcidid>https://orcid.org/0000-0001-9121-1716</orcidid><orcidid>https://orcid.org/0000-0002-6957-0293</orcidid><orcidid>https://orcid.org/0000-0002-7241-4371</orcidid><orcidid>https://orcid.org/0000-0002-3757-0889</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2023-03, Vol.72 (1), p.27-36
issn 0018-9529
1558-1721
language eng
recordid cdi_crossref_primary_10_1109_TR_2022_3164976
source IEEE Electronic Library (IEL) Journals
subjects Convex-hulls
Convexity
Degradation
Fast Fourier transformations
Fault detection
Fault diagnosis
Fourier transforms
health indicator (HI)
Hidden Markov models
Hulls
Line spectra
machine fault diagnosis
Modelling
Regularization
Representations
Signal monitoring
sparse representation
spectral lines
Time-domain analysis
Tracking
Trajectory tracking
Vibration monitoring
Vibrations
title Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20and%20Flexible%20Convex-Hull%20Representation%20for%20Machine%20Degradation%20Modeling&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Yan,%20Tongtong&rft.date=2023-03&rft.volume=72&rft.issue=1&rft.spage=27&rft.epage=36&rft.pages=27-36&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2022.3164976&rft_dat=%3Cproquest_cross%3E2781846458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2781846458&rft_id=info:pmid/&rft_ieee_id=9761974&rfr_iscdi=true