Loading…
Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling
Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize deg...
Saved in:
Published in: | IEEE transactions on reliability 2023-03, Vol.72 (1), p.27-36 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93 |
container_end_page | 36 |
container_issue | 1 |
container_start_page | 27 |
container_title | IEEE transactions on reliability |
container_volume | 72 |
creator | Yan, Tongtong Wang, Yuting Xia, Tangbin Hou, Bingchang Xi, Lifeng Wang, Dong |
description | Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize degradation trajectory tracking and fault diagnosis at a same time. First, considering using vibration data as health monitoring signals, globally normal and abnormal spectral lines can be obtained based on the fast Fourier transform and they are, respectively, characterized as individually flexible convex hulls. Subsequently, a sparse and flexible convex-hull representation degradation model is constructed by simultaneously finding the closest pair of samples and its sparse regularization between normal and abnormal convex hulls. Finally, a health indicator can be developed for early fault detection and degradation trajectory tracking during a machine life cycle. Meanwhile, quick fault diagnosis can be realized by finding a difference between the optimal closest samples in a normal convex hull and an abnormal convex hull. Two experimental cases are used to show the effectiveness and superiority of the proposed model to recent existing works. |
doi_str_mv | 10.1109/TR.2022.3164976 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TR_2022_3164976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9761974</ieee_id><sourcerecordid>2781846458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93</originalsourceid><addsrcrecordid>eNo9kEtLw0AQxxdRsFbPHrwEPKfdV_ZxlGqt0FKo9bxsspOaErNxN5X67U1J8TTMzP8BP4TuCZ4QgvV0u5lQTOmEEcG1FBdoRLJMpURScolGGBOV6ozqa3QT475fOddqhNbvrQ0REtu4ZF7DscprSGa--YFjujjUdbKBNkCEprNd5Zuk9CFZ2eKzaiB5hl2wbrivvIO6ana36Kq0dYS78xyjj_nLdrZIl-vXt9nTMi2o0l0KVrlMMUsEk8TlmWRSsRJLXLKCusIxWQqby4LmWUlFzrnLpbDCMgKCsEKzMXocctvgvw8QO7P3h9D0lYZKRRQXvM8fo-mgKoKPMUBp2lB92fBrCDYnama7MSdq5kytdzwMjgoA_tX9h2jJ2R8Rjmgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781846458</pqid></control><display><type>article</type><title>Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yan, Tongtong ; Wang, Yuting ; Xia, Tangbin ; Hou, Bingchang ; Xi, Lifeng ; Wang, Dong</creator><creatorcontrib>Yan, Tongtong ; Wang, Yuting ; Xia, Tangbin ; Hou, Bingchang ; Xi, Lifeng ; Wang, Dong</creatorcontrib><description>Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize degradation trajectory tracking and fault diagnosis at a same time. First, considering using vibration data as health monitoring signals, globally normal and abnormal spectral lines can be obtained based on the fast Fourier transform and they are, respectively, characterized as individually flexible convex hulls. Subsequently, a sparse and flexible convex-hull representation degradation model is constructed by simultaneously finding the closest pair of samples and its sparse regularization between normal and abnormal convex hulls. Finally, a health indicator can be developed for early fault detection and degradation trajectory tracking during a machine life cycle. Meanwhile, quick fault diagnosis can be realized by finding a difference between the optimal closest samples in a normal convex hull and an abnormal convex hull. Two experimental cases are used to show the effectiveness and superiority of the proposed model to recent existing works.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2022.3164976</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convex-hulls ; Convexity ; Degradation ; Fast Fourier transformations ; Fault detection ; Fault diagnosis ; Fourier transforms ; health indicator (HI) ; Hidden Markov models ; Hulls ; Line spectra ; machine fault diagnosis ; Modelling ; Regularization ; Representations ; Signal monitoring ; sparse representation ; spectral lines ; Time-domain analysis ; Tracking ; Trajectory tracking ; Vibration monitoring ; Vibrations</subject><ispartof>IEEE transactions on reliability, 2023-03, Vol.72 (1), p.27-36</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93</citedby><cites>FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93</cites><orcidid>0000-0003-4872-4860 ; 0000-0001-9121-1716 ; 0000-0002-6957-0293 ; 0000-0002-7241-4371 ; 0000-0002-3757-0889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9761974$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Yan, Tongtong</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Xia, Tangbin</creatorcontrib><creatorcontrib>Hou, Bingchang</creatorcontrib><creatorcontrib>Xi, Lifeng</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><title>Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize degradation trajectory tracking and fault diagnosis at a same time. First, considering using vibration data as health monitoring signals, globally normal and abnormal spectral lines can be obtained based on the fast Fourier transform and they are, respectively, characterized as individually flexible convex hulls. Subsequently, a sparse and flexible convex-hull representation degradation model is constructed by simultaneously finding the closest pair of samples and its sparse regularization between normal and abnormal convex hulls. Finally, a health indicator can be developed for early fault detection and degradation trajectory tracking during a machine life cycle. Meanwhile, quick fault diagnosis can be realized by finding a difference between the optimal closest samples in a normal convex hull and an abnormal convex hull. Two experimental cases are used to show the effectiveness and superiority of the proposed model to recent existing works.</description><subject>Convex-hulls</subject><subject>Convexity</subject><subject>Degradation</subject><subject>Fast Fourier transformations</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Fourier transforms</subject><subject>health indicator (HI)</subject><subject>Hidden Markov models</subject><subject>Hulls</subject><subject>Line spectra</subject><subject>machine fault diagnosis</subject><subject>Modelling</subject><subject>Regularization</subject><subject>Representations</subject><subject>Signal monitoring</subject><subject>sparse representation</subject><subject>spectral lines</subject><subject>Time-domain analysis</subject><subject>Tracking</subject><subject>Trajectory tracking</subject><subject>Vibration monitoring</subject><subject>Vibrations</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AQxxdRsFbPHrwEPKfdV_ZxlGqt0FKo9bxsspOaErNxN5X67U1J8TTMzP8BP4TuCZ4QgvV0u5lQTOmEEcG1FBdoRLJMpURScolGGBOV6ozqa3QT475fOddqhNbvrQ0REtu4ZF7DscprSGa--YFjujjUdbKBNkCEprNd5Zuk9CFZ2eKzaiB5hl2wbrivvIO6ana36Kq0dYS78xyjj_nLdrZIl-vXt9nTMi2o0l0KVrlMMUsEk8TlmWRSsRJLXLKCusIxWQqby4LmWUlFzrnLpbDCMgKCsEKzMXocctvgvw8QO7P3h9D0lYZKRRQXvM8fo-mgKoKPMUBp2lB92fBrCDYnama7MSdq5kytdzwMjgoA_tX9h2jJ2R8Rjmgs</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Yan, Tongtong</creator><creator>Wang, Yuting</creator><creator>Xia, Tangbin</creator><creator>Hou, Bingchang</creator><creator>Xi, Lifeng</creator><creator>Wang, Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4872-4860</orcidid><orcidid>https://orcid.org/0000-0001-9121-1716</orcidid><orcidid>https://orcid.org/0000-0002-6957-0293</orcidid><orcidid>https://orcid.org/0000-0002-7241-4371</orcidid><orcidid>https://orcid.org/0000-0002-3757-0889</orcidid></search><sort><creationdate>202303</creationdate><title>Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling</title><author>Yan, Tongtong ; Wang, Yuting ; Xia, Tangbin ; Hou, Bingchang ; Xi, Lifeng ; Wang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convex-hulls</topic><topic>Convexity</topic><topic>Degradation</topic><topic>Fast Fourier transformations</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Fourier transforms</topic><topic>health indicator (HI)</topic><topic>Hidden Markov models</topic><topic>Hulls</topic><topic>Line spectra</topic><topic>machine fault diagnosis</topic><topic>Modelling</topic><topic>Regularization</topic><topic>Representations</topic><topic>Signal monitoring</topic><topic>sparse representation</topic><topic>spectral lines</topic><topic>Time-domain analysis</topic><topic>Tracking</topic><topic>Trajectory tracking</topic><topic>Vibration monitoring</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Tongtong</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Xia, Tangbin</creatorcontrib><creatorcontrib>Hou, Bingchang</creatorcontrib><creatorcontrib>Xi, Lifeng</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Tongtong</au><au>Wang, Yuting</au><au>Xia, Tangbin</au><au>Hou, Bingchang</au><au>Xi, Lifeng</au><au>Wang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2023-03</date><risdate>2023</risdate><volume>72</volume><issue>1</issue><spage>27</spage><epage>36</epage><pages>27-36</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Convex hulls based maximum margin classification has been widely studied for machine fault diagnosis, while its exploration for machine degradation modeling is seldom reported. In this study, a sparse and flexible convex-hull representation for machine degradation modeling is proposed to realize degradation trajectory tracking and fault diagnosis at a same time. First, considering using vibration data as health monitoring signals, globally normal and abnormal spectral lines can be obtained based on the fast Fourier transform and they are, respectively, characterized as individually flexible convex hulls. Subsequently, a sparse and flexible convex-hull representation degradation model is constructed by simultaneously finding the closest pair of samples and its sparse regularization between normal and abnormal convex hulls. Finally, a health indicator can be developed for early fault detection and degradation trajectory tracking during a machine life cycle. Meanwhile, quick fault diagnosis can be realized by finding a difference between the optimal closest samples in a normal convex hull and an abnormal convex hull. Two experimental cases are used to show the effectiveness and superiority of the proposed model to recent existing works.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2022.3164976</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4872-4860</orcidid><orcidid>https://orcid.org/0000-0001-9121-1716</orcidid><orcidid>https://orcid.org/0000-0002-6957-0293</orcidid><orcidid>https://orcid.org/0000-0002-7241-4371</orcidid><orcidid>https://orcid.org/0000-0002-3757-0889</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2023-03, Vol.72 (1), p.27-36 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TR_2022_3164976 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Convex-hulls Convexity Degradation Fast Fourier transformations Fault detection Fault diagnosis Fourier transforms health indicator (HI) Hidden Markov models Hulls Line spectra machine fault diagnosis Modelling Regularization Representations Signal monitoring sparse representation spectral lines Time-domain analysis Tracking Trajectory tracking Vibration monitoring Vibrations |
title | Sparse and Flexible Convex-Hull Representation for Machine Degradation Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20and%20Flexible%20Convex-Hull%20Representation%20for%20Machine%20Degradation%20Modeling&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Yan,%20Tongtong&rft.date=2023-03&rft.volume=72&rft.issue=1&rft.spage=27&rft.epage=36&rft.pages=27-36&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2022.3164976&rft_dat=%3Cproquest_cross%3E2781846458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-ea8d583a16371db573783f070f3c2dcd37f6ab7c2b5f26b44db76a6a31e613c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2781846458&rft_id=info:pmid/&rft_ieee_id=9761974&rfr_iscdi=true |