Loading…
Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services
The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distribu...
Saved in:
Published in: | IEEE transactions on services computing 2023-05, Vol.16 (3), p.1778-1792 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633 |
container_end_page | 1792 |
container_issue | 3 |
container_start_page | 1778 |
container_title | IEEE transactions on services computing |
container_volume | 16 |
creator | Ren, Pei Liu, Ling Qiao, Xiuquan Chen, Junliang |
description | The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distributed edge system orchestration approach for mobile Web AR in 5G networks. The design of EARNet makes three novel contributions. First, EARNet manages the edge network dynamics with respect to user mobility and their Web AR service requests by employing landmarks and grid index based edge node localization mechanisms. Second, EARNet takes into account both request serving performance and offloading cost in managing workload balance and quality of service and leverages dynamic hash and max heap mechanisms for efficient Web AR service lookup and AR computations. Third, EARNet designs the service migration schemes by optimizing several performance factors, such as message efficiency, scheduling latency, request density and locality of mobile users and edge nodes, and accuracy of Web AR services after migration. Experimental evaluations are conducted using the real base station deployment data in the Melbourne Central Business District (CBD) area. The results shows the effectiveness of the EARNet edge orchestration approach compared to several baseline approaches. |
doi_str_mv | 10.1109/TSC.2022.3190375 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2022_3190375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9829253</ieee_id><sourcerecordid>2825600002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wcuC563JpJvdHGutH1Ap2BaPIZvM1pRutya7Qv-9KS3iXGZg3nc-HkJuGR0wRuXDYj4eAAUYcCYpz7Mz0mOSy5TxfHj-r74kVyGsKRVQFLJHlk8utN6VXYs2mdgVJvN9aLFOZt58YWzp1jXbpGp88oll-qhD1L03pdtgMupWNW4Pxg_UG9fukzn6H2cwXJOLSm8C3pxynyyfJ4vxazqdvbyNR9PUgGRtqqW2pmSZsIwaSaXNBEPU1g4BMi455hlUgJAJIWAoaIk0qxgDiI-aXHDeJ_fHuTvffHfxXLVuOr-NKxUU0UZjQFTRo8r4JgSPldp5V2u_V4yqAzwV4akDPHWCFy13R4tDxD-5LEDGw_gvRvVptA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825600002</pqid></control><display><type>article</type><title>Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ren, Pei ; Liu, Ling ; Qiao, Xiuquan ; Chen, Junliang</creator><creatorcontrib>Ren, Pei ; Liu, Ling ; Qiao, Xiuquan ; Chen, Junliang</creatorcontrib><description>The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distributed edge system orchestration approach for mobile Web AR in 5G networks. The design of EARNet makes three novel contributions. First, EARNet manages the edge network dynamics with respect to user mobility and their Web AR service requests by employing landmarks and grid index based edge node localization mechanisms. Second, EARNet takes into account both request serving performance and offloading cost in managing workload balance and quality of service and leverages dynamic hash and max heap mechanisms for efficient Web AR service lookup and AR computations. Third, EARNet designs the service migration schemes by optimizing several performance factors, such as message efficiency, scheduling latency, request density and locality of mobile users and edge nodes, and accuracy of Web AR services after migration. Experimental evaluations are conducted using the real base station deployment data in the Melbourne Central Business District (CBD) area. The results shows the effectiveness of the EARNet edge orchestration approach compared to several baseline approaches.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2022.3190375</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5G networks ; Augmented reality ; Central business districts ; distributed system ; Edge computing ; Image edge detection ; Location awareness ; Mobile applications ; Network latency ; Optimization ; Servers ; web-based augmented reality ; Wireless networks</subject><ispartof>IEEE transactions on services computing, 2023-05, Vol.16 (3), p.1778-1792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633</citedby><cites>FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633</cites><orcidid>0000-0002-2371-9515 ; 0000-0002-4138-3082 ; 0000-0002-0140-0650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9829253$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Ren, Pei</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Qiao, Xiuquan</creatorcontrib><creatorcontrib>Chen, Junliang</creatorcontrib><title>Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distributed edge system orchestration approach for mobile Web AR in 5G networks. The design of EARNet makes three novel contributions. First, EARNet manages the edge network dynamics with respect to user mobility and their Web AR service requests by employing landmarks and grid index based edge node localization mechanisms. Second, EARNet takes into account both request serving performance and offloading cost in managing workload balance and quality of service and leverages dynamic hash and max heap mechanisms for efficient Web AR service lookup and AR computations. Third, EARNet designs the service migration schemes by optimizing several performance factors, such as message efficiency, scheduling latency, request density and locality of mobile users and edge nodes, and accuracy of Web AR services after migration. Experimental evaluations are conducted using the real base station deployment data in the Melbourne Central Business District (CBD) area. The results shows the effectiveness of the EARNet edge orchestration approach compared to several baseline approaches.</description><subject>5G mobile communication</subject><subject>5G networks</subject><subject>Augmented reality</subject><subject>Central business districts</subject><subject>distributed system</subject><subject>Edge computing</subject><subject>Image edge detection</subject><subject>Location awareness</subject><subject>Mobile applications</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Servers</subject><subject>web-based augmented reality</subject><subject>Wireless networks</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3wcuC563JpJvdHGutH1Ap2BaPIZvM1pRutya7Qv-9KS3iXGZg3nc-HkJuGR0wRuXDYj4eAAUYcCYpz7Mz0mOSy5TxfHj-r74kVyGsKRVQFLJHlk8utN6VXYs2mdgVJvN9aLFOZt58YWzp1jXbpGp88oll-qhD1L03pdtgMupWNW4Pxg_UG9fukzn6H2cwXJOLSm8C3pxynyyfJ4vxazqdvbyNR9PUgGRtqqW2pmSZsIwaSaXNBEPU1g4BMi455hlUgJAJIWAoaIk0qxgDiI-aXHDeJ_fHuTvffHfxXLVuOr-NKxUU0UZjQFTRo8r4JgSPldp5V2u_V4yqAzwV4akDPHWCFy13R4tDxD-5LEDGw_gvRvVptA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ren, Pei</creator><creator>Liu, Ling</creator><creator>Qiao, Xiuquan</creator><creator>Chen, Junliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2371-9515</orcidid><orcidid>https://orcid.org/0000-0002-4138-3082</orcidid><orcidid>https://orcid.org/0000-0002-0140-0650</orcidid></search><sort><creationdate>20230501</creationdate><title>Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services</title><author>Ren, Pei ; Liu, Ling ; Qiao, Xiuquan ; Chen, Junliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>5G networks</topic><topic>Augmented reality</topic><topic>Central business districts</topic><topic>distributed system</topic><topic>Edge computing</topic><topic>Image edge detection</topic><topic>Location awareness</topic><topic>Mobile applications</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Servers</topic><topic>web-based augmented reality</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Pei</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Qiao, Xiuquan</creatorcontrib><creatorcontrib>Chen, Junliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Pei</au><au>Liu, Ling</au><au>Qiao, Xiuquan</au><au>Chen, Junliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1778</spage><epage>1792</epage><pages>1778-1792</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distributed edge system orchestration approach for mobile Web AR in 5G networks. The design of EARNet makes three novel contributions. First, EARNet manages the edge network dynamics with respect to user mobility and their Web AR service requests by employing landmarks and grid index based edge node localization mechanisms. Second, EARNet takes into account both request serving performance and offloading cost in managing workload balance and quality of service and leverages dynamic hash and max heap mechanisms for efficient Web AR service lookup and AR computations. Third, EARNet designs the service migration schemes by optimizing several performance factors, such as message efficiency, scheduling latency, request density and locality of mobile users and edge nodes, and accuracy of Web AR services after migration. Experimental evaluations are conducted using the real base station deployment data in the Melbourne Central Business District (CBD) area. The results shows the effectiveness of the EARNet edge orchestration approach compared to several baseline approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2022.3190375</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2371-9515</orcidid><orcidid>https://orcid.org/0000-0002-4138-3082</orcidid><orcidid>https://orcid.org/0000-0002-0140-0650</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2023-05, Vol.16 (3), p.1778-1792 |
issn | 1939-1374 1939-1374 2372-0204 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSC_2022_3190375 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 5G mobile communication 5G networks Augmented reality Central business districts distributed system Edge computing Image edge detection Location awareness Mobile applications Network latency Optimization Servers web-based augmented reality Wireless networks |
title | Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Edge%20System%20Orchestration%20for%20Web-Based%20Mobile%20Augmented%20Reality%20Services&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Ren,%20Pei&rft.date=2023-05-01&rft.volume=16&rft.issue=3&rft.spage=1778&rft.epage=1792&rft.pages=1778-1792&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2022.3190375&rft_dat=%3Cproquest_cross%3E2825600002%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825600002&rft_id=info:pmid/&rft_ieee_id=9829253&rfr_iscdi=true |