Loading…

Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services

The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distribu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on services computing 2023-05, Vol.16 (3), p.1778-1792
Main Authors: Ren, Pei, Liu, Ling, Qiao, Xiuquan, Chen, Junliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633
cites cdi_FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633
container_end_page 1792
container_issue 3
container_start_page 1778
container_title IEEE transactions on services computing
container_volume 16
creator Ren, Pei
Liu, Ling
Qiao, Xiuquan
Chen, Junliang
description The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distributed edge system orchestration approach for mobile Web AR in 5G networks. The design of EARNet makes three novel contributions. First, EARNet manages the edge network dynamics with respect to user mobility and their Web AR service requests by employing landmarks and grid index based edge node localization mechanisms. Second, EARNet takes into account both request serving performance and offloading cost in managing workload balance and quality of service and leverages dynamic hash and max heap mechanisms for efficient Web AR service lookup and AR computations. Third, EARNet designs the service migration schemes by optimizing several performance factors, such as message efficiency, scheduling latency, request density and locality of mobile users and edge nodes, and accuracy of Web AR services after migration. Experimental evaluations are conducted using the real base station deployment data in the Melbourne Central Business District (CBD) area. The results shows the effectiveness of the EARNet edge orchestration approach compared to several baseline approaches.
doi_str_mv 10.1109/TSC.2022.3190375
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2022_3190375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9829253</ieee_id><sourcerecordid>2825600002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wcuC563JpJvdHGutH1Ap2BaPIZvM1pRutya7Qv-9KS3iXGZg3nc-HkJuGR0wRuXDYj4eAAUYcCYpz7Mz0mOSy5TxfHj-r74kVyGsKRVQFLJHlk8utN6VXYs2mdgVJvN9aLFOZt58YWzp1jXbpGp88oll-qhD1L03pdtgMupWNW4Pxg_UG9fukzn6H2cwXJOLSm8C3pxynyyfJ4vxazqdvbyNR9PUgGRtqqW2pmSZsIwaSaXNBEPU1g4BMi455hlUgJAJIWAoaIk0qxgDiI-aXHDeJ_fHuTvffHfxXLVuOr-NKxUU0UZjQFTRo8r4JgSPldp5V2u_V4yqAzwV4akDPHWCFy13R4tDxD-5LEDGw_gvRvVptA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825600002</pqid></control><display><type>article</type><title>Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ren, Pei ; Liu, Ling ; Qiao, Xiuquan ; Chen, Junliang</creator><creatorcontrib>Ren, Pei ; Liu, Ling ; Qiao, Xiuquan ; Chen, Junliang</creatorcontrib><description>The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distributed edge system orchestration approach for mobile Web AR in 5G networks. The design of EARNet makes three novel contributions. First, EARNet manages the edge network dynamics with respect to user mobility and their Web AR service requests by employing landmarks and grid index based edge node localization mechanisms. Second, EARNet takes into account both request serving performance and offloading cost in managing workload balance and quality of service and leverages dynamic hash and max heap mechanisms for efficient Web AR service lookup and AR computations. Third, EARNet designs the service migration schemes by optimizing several performance factors, such as message efficiency, scheduling latency, request density and locality of mobile users and edge nodes, and accuracy of Web AR services after migration. Experimental evaluations are conducted using the real base station deployment data in the Melbourne Central Business District (CBD) area. The results shows the effectiveness of the EARNet edge orchestration approach compared to several baseline approaches.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2022.3190375</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5G networks ; Augmented reality ; Central business districts ; distributed system ; Edge computing ; Image edge detection ; Location awareness ; Mobile applications ; Network latency ; Optimization ; Servers ; web-based augmented reality ; Wireless networks</subject><ispartof>IEEE transactions on services computing, 2023-05, Vol.16 (3), p.1778-1792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633</citedby><cites>FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633</cites><orcidid>0000-0002-2371-9515 ; 0000-0002-4138-3082 ; 0000-0002-0140-0650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9829253$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Ren, Pei</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Qiao, Xiuquan</creatorcontrib><creatorcontrib>Chen, Junliang</creatorcontrib><title>Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distributed edge system orchestration approach for mobile Web AR in 5G networks. The design of EARNet makes three novel contributions. First, EARNet manages the edge network dynamics with respect to user mobility and their Web AR service requests by employing landmarks and grid index based edge node localization mechanisms. Second, EARNet takes into account both request serving performance and offloading cost in managing workload balance and quality of service and leverages dynamic hash and max heap mechanisms for efficient Web AR service lookup and AR computations. Third, EARNet designs the service migration schemes by optimizing several performance factors, such as message efficiency, scheduling latency, request density and locality of mobile users and edge nodes, and accuracy of Web AR services after migration. Experimental evaluations are conducted using the real base station deployment data in the Melbourne Central Business District (CBD) area. The results shows the effectiveness of the EARNet edge orchestration approach compared to several baseline approaches.</description><subject>5G mobile communication</subject><subject>5G networks</subject><subject>Augmented reality</subject><subject>Central business districts</subject><subject>distributed system</subject><subject>Edge computing</subject><subject>Image edge detection</subject><subject>Location awareness</subject><subject>Mobile applications</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Servers</subject><subject>web-based augmented reality</subject><subject>Wireless networks</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3wcuC563JpJvdHGutH1Ap2BaPIZvM1pRutya7Qv-9KS3iXGZg3nc-HkJuGR0wRuXDYj4eAAUYcCYpz7Mz0mOSy5TxfHj-r74kVyGsKRVQFLJHlk8utN6VXYs2mdgVJvN9aLFOZt58YWzp1jXbpGp88oll-qhD1L03pdtgMupWNW4Pxg_UG9fukzn6H2cwXJOLSm8C3pxynyyfJ4vxazqdvbyNR9PUgGRtqqW2pmSZsIwaSaXNBEPU1g4BMi455hlUgJAJIWAoaIk0qxgDiI-aXHDeJ_fHuTvffHfxXLVuOr-NKxUU0UZjQFTRo8r4JgSPldp5V2u_V4yqAzwV4akDPHWCFy13R4tDxD-5LEDGw_gvRvVptA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ren, Pei</creator><creator>Liu, Ling</creator><creator>Qiao, Xiuquan</creator><creator>Chen, Junliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2371-9515</orcidid><orcidid>https://orcid.org/0000-0002-4138-3082</orcidid><orcidid>https://orcid.org/0000-0002-0140-0650</orcidid></search><sort><creationdate>20230501</creationdate><title>Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services</title><author>Ren, Pei ; Liu, Ling ; Qiao, Xiuquan ; Chen, Junliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>5G networks</topic><topic>Augmented reality</topic><topic>Central business districts</topic><topic>distributed system</topic><topic>Edge computing</topic><topic>Image edge detection</topic><topic>Location awareness</topic><topic>Mobile applications</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Servers</topic><topic>web-based augmented reality</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Pei</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Qiao, Xiuquan</creatorcontrib><creatorcontrib>Chen, Junliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Pei</au><au>Liu, Ling</au><au>Qiao, Xiuquan</au><au>Chen, Junliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1778</spage><epage>1792</epage><pages>1778-1792</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>The emergence of edge computing and 5G networks has fueled the growth of mobile Web AR. Although efforts have been made to improve the edge system efficiency for Web AR applications, efficient edge-assisted mobile Web AR services remain technically challenging. This paper presents EARNet, a distributed edge system orchestration approach for mobile Web AR in 5G networks. The design of EARNet makes three novel contributions. First, EARNet manages the edge network dynamics with respect to user mobility and their Web AR service requests by employing landmarks and grid index based edge node localization mechanisms. Second, EARNet takes into account both request serving performance and offloading cost in managing workload balance and quality of service and leverages dynamic hash and max heap mechanisms for efficient Web AR service lookup and AR computations. Third, EARNet designs the service migration schemes by optimizing several performance factors, such as message efficiency, scheduling latency, request density and locality of mobile users and edge nodes, and accuracy of Web AR services after migration. Experimental evaluations are conducted using the real base station deployment data in the Melbourne Central Business District (CBD) area. The results shows the effectiveness of the EARNet edge orchestration approach compared to several baseline approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2022.3190375</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2371-9515</orcidid><orcidid>https://orcid.org/0000-0002-4138-3082</orcidid><orcidid>https://orcid.org/0000-0002-0140-0650</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2023-05, Vol.16 (3), p.1778-1792
issn 1939-1374
1939-1374
2372-0204
language eng
recordid cdi_crossref_primary_10_1109_TSC_2022_3190375
source IEEE Electronic Library (IEL) Journals
subjects 5G mobile communication
5G networks
Augmented reality
Central business districts
distributed system
Edge computing
Image edge detection
Location awareness
Mobile applications
Network latency
Optimization
Servers
web-based augmented reality
Wireless networks
title Distributed Edge System Orchestration for Web-Based Mobile Augmented Reality Services
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Edge%20System%20Orchestration%20for%20Web-Based%20Mobile%20Augmented%20Reality%20Services&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Ren,%20Pei&rft.date=2023-05-01&rft.volume=16&rft.issue=3&rft.spage=1778&rft.epage=1792&rft.pages=1778-1792&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2022.3190375&rft_dat=%3Cproquest_cross%3E2825600002%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a9adcb156d10c909d561eeadd4225393e752f2e256662460be05f1122202c7633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825600002&rft_id=info:pmid/&rft_ieee_id=9829253&rfr_iscdi=true