Loading…

Online Layer-Aware Joint Request Scheduling, Container Placement, and Resource Provision in Edge Computing

Containers have emerged as a pivotal tool for service deployment in edge computing. Before running the container, an image composed of several layers must exist locally. Recent strategies have utilized layer-sharing in images to reduce deployment delays. However, existing research only focuses on a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on services computing 2024-11, p.1-14
Main Authors: Li, Zhenzheng, Lou, Jiong, Tang, Zhiqing, Guo, Jianxiong, Wang, Tian, Jia, Weijia, Zhao, Wei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on services computing
container_volume
creator Li, Zhenzheng
Lou, Jiong
Tang, Zhiqing
Guo, Jianxiong
Wang, Tian
Jia, Weijia
Zhao, Wei
description Containers have emerged as a pivotal tool for service deployment in edge computing. Before running the container, an image composed of several layers must exist locally. Recent strategies have utilized layer-sharing in images to reduce deployment delays. However, existing research only focuses on a single aspect of container orchestration, like container placement, neglecting the joint optimization of the entire orchestration process. To fill in such gaps, this paper introduces an online strategy that considers layer-aware container orchestration, encompassing request scheduling, container placement, and resource provision. The goal is to reduce costs, adapt to evolving user demands, and adhere to system constraints. We present an online optimization problem that accounts for various real-world factors in orchestration, including container and server expenses. An online algorithm is proposed, integrating a regularization-based approach and stepwise rounding to address this optimization problem efficiently. The regularization approach separates time-dependent container placement and server wake-up costs, requiring only current information and past decisions. The stepwise rounding process generates feasible solutions that meet system constraints, reducing computational costs. Additionally, a competitive ratio proof is provided for the proposed algorithm. Extensive evaluations demonstrate that our approach achieves about 20% performance enhancement compared to baseline algorithms.
doi_str_mv 10.1109/TSC.2024.3504237
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSC_2024_3504237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10759825</ieee_id><sourcerecordid>10_1109_TSC_2024_3504237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625-415587de4812c24aa05122701413f09a869e0c4aeffab2032d231de5cb9598af3</originalsourceid><addsrcrecordid>eNpNkL1uwjAURq2qlUpp9w4d_ACE2tc2iUcU0T9FAhX2yDg3NAgcaietePsawdDl3uWcbziEPHI25pzp59UyHwMDORaKSRDpFRnECwkDJq_JgGuhEy5SeUvuQtgyNoEs0wOynbtd45AW5og-mf4aj_SjbVxHP_G7x9DRpf3Cqo_QZkTz1nUm4p4udsbiHl03osZVEQ5t7y3ShW9_mtC0jjaOzqoNRmd_6Luo35Ob2uwCPlz-kKxeZqv8LSnmr-_5tEjsBFQiuVJZWqHMOFiQxjDFAVLGJRc10yabaGRWGqxrswYmoALBK1R2rZXOTC2GhJ1nrW9D8FiXB9_sjT-WnJWnVGVMVZ5SlZdUUXk6Kw0i_sPTuAhK_AEdpmV5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Online Layer-Aware Joint Request Scheduling, Container Placement, and Resource Provision in Edge Computing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Zhenzheng ; Lou, Jiong ; Tang, Zhiqing ; Guo, Jianxiong ; Wang, Tian ; Jia, Weijia ; Zhao, Wei</creator><creatorcontrib>Li, Zhenzheng ; Lou, Jiong ; Tang, Zhiqing ; Guo, Jianxiong ; Wang, Tian ; Jia, Weijia ; Zhao, Wei</creatorcontrib><description>Containers have emerged as a pivotal tool for service deployment in edge computing. Before running the container, an image composed of several layers must exist locally. Recent strategies have utilized layer-sharing in images to reduce deployment delays. However, existing research only focuses on a single aspect of container orchestration, like container placement, neglecting the joint optimization of the entire orchestration process. To fill in such gaps, this paper introduces an online strategy that considers layer-aware container orchestration, encompassing request scheduling, container placement, and resource provision. The goal is to reduce costs, adapt to evolving user demands, and adhere to system constraints. We present an online optimization problem that accounts for various real-world factors in orchestration, including container and server expenses. An online algorithm is proposed, integrating a regularization-based approach and stepwise rounding to address this optimization problem efficiently. The regularization approach separates time-dependent container placement and server wake-up costs, requiring only current information and past decisions. The stepwise rounding process generates feasible solutions that meet system constraints, reducing computational costs. Additionally, a competitive ratio proof is provided for the proposed algorithm. Extensive evaluations demonstrate that our approach achieves about 20% performance enhancement compared to baseline algorithms.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2024.3504237</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Container placement ; Containers ; Costs ; Delays ; Edge computing ; Image edge detection ; Optimization ; Processor scheduling ; request scheduling ; resource provision ; Scheduling ; Servers</subject><ispartof>IEEE transactions on services computing, 2024-11, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6268-2559 ; 0000-0001-9245-2626 ; 0000-0002-0994-3297 ; 0000-0003-4819-621X ; 0000-0002-9375-4818 ; 0000-0003-1000-3937 ; 0009-0000-7661-1922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10759825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Zhenzheng</creatorcontrib><creatorcontrib>Lou, Jiong</creatorcontrib><creatorcontrib>Tang, Zhiqing</creatorcontrib><creatorcontrib>Guo, Jianxiong</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Jia, Weijia</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><title>Online Layer-Aware Joint Request Scheduling, Container Placement, and Resource Provision in Edge Computing</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Containers have emerged as a pivotal tool for service deployment in edge computing. Before running the container, an image composed of several layers must exist locally. Recent strategies have utilized layer-sharing in images to reduce deployment delays. However, existing research only focuses on a single aspect of container orchestration, like container placement, neglecting the joint optimization of the entire orchestration process. To fill in such gaps, this paper introduces an online strategy that considers layer-aware container orchestration, encompassing request scheduling, container placement, and resource provision. The goal is to reduce costs, adapt to evolving user demands, and adhere to system constraints. We present an online optimization problem that accounts for various real-world factors in orchestration, including container and server expenses. An online algorithm is proposed, integrating a regularization-based approach and stepwise rounding to address this optimization problem efficiently. The regularization approach separates time-dependent container placement and server wake-up costs, requiring only current information and past decisions. The stepwise rounding process generates feasible solutions that meet system constraints, reducing computational costs. Additionally, a competitive ratio proof is provided for the proposed algorithm. Extensive evaluations demonstrate that our approach achieves about 20% performance enhancement compared to baseline algorithms.</description><subject>Artificial intelligence</subject><subject>Container placement</subject><subject>Containers</subject><subject>Costs</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Image edge detection</subject><subject>Optimization</subject><subject>Processor scheduling</subject><subject>request scheduling</subject><subject>resource provision</subject><subject>Scheduling</subject><subject>Servers</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkL1uwjAURq2qlUpp9w4d_ACE2tc2iUcU0T9FAhX2yDg3NAgcaietePsawdDl3uWcbziEPHI25pzp59UyHwMDORaKSRDpFRnECwkDJq_JgGuhEy5SeUvuQtgyNoEs0wOynbtd45AW5og-mf4aj_SjbVxHP_G7x9DRpf3Cqo_QZkTz1nUm4p4udsbiHl03osZVEQ5t7y3ShW9_mtC0jjaOzqoNRmd_6Luo35Ob2uwCPlz-kKxeZqv8LSnmr-_5tEjsBFQiuVJZWqHMOFiQxjDFAVLGJRc10yabaGRWGqxrswYmoALBK1R2rZXOTC2GhJ1nrW9D8FiXB9_sjT-WnJWnVGVMVZ5SlZdUUXk6Kw0i_sPTuAhK_AEdpmV5</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Li, Zhenzheng</creator><creator>Lou, Jiong</creator><creator>Tang, Zhiqing</creator><creator>Guo, Jianxiong</creator><creator>Wang, Tian</creator><creator>Jia, Weijia</creator><creator>Zhao, Wei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6268-2559</orcidid><orcidid>https://orcid.org/0000-0001-9245-2626</orcidid><orcidid>https://orcid.org/0000-0002-0994-3297</orcidid><orcidid>https://orcid.org/0000-0003-4819-621X</orcidid><orcidid>https://orcid.org/0000-0002-9375-4818</orcidid><orcidid>https://orcid.org/0000-0003-1000-3937</orcidid><orcidid>https://orcid.org/0009-0000-7661-1922</orcidid></search><sort><creationdate>20241120</creationdate><title>Online Layer-Aware Joint Request Scheduling, Container Placement, and Resource Provision in Edge Computing</title><author>Li, Zhenzheng ; Lou, Jiong ; Tang, Zhiqing ; Guo, Jianxiong ; Wang, Tian ; Jia, Weijia ; Zhao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625-415587de4812c24aa05122701413f09a869e0c4aeffab2032d231de5cb9598af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Container placement</topic><topic>Containers</topic><topic>Costs</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Image edge detection</topic><topic>Optimization</topic><topic>Processor scheduling</topic><topic>request scheduling</topic><topic>resource provision</topic><topic>Scheduling</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenzheng</creatorcontrib><creatorcontrib>Lou, Jiong</creatorcontrib><creatorcontrib>Tang, Zhiqing</creatorcontrib><creatorcontrib>Guo, Jianxiong</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Jia, Weijia</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhenzheng</au><au>Lou, Jiong</au><au>Tang, Zhiqing</au><au>Guo, Jianxiong</au><au>Wang, Tian</au><au>Jia, Weijia</au><au>Zhao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Layer-Aware Joint Request Scheduling, Container Placement, and Resource Provision in Edge Computing</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2024-11-20</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Containers have emerged as a pivotal tool for service deployment in edge computing. Before running the container, an image composed of several layers must exist locally. Recent strategies have utilized layer-sharing in images to reduce deployment delays. However, existing research only focuses on a single aspect of container orchestration, like container placement, neglecting the joint optimization of the entire orchestration process. To fill in such gaps, this paper introduces an online strategy that considers layer-aware container orchestration, encompassing request scheduling, container placement, and resource provision. The goal is to reduce costs, adapt to evolving user demands, and adhere to system constraints. We present an online optimization problem that accounts for various real-world factors in orchestration, including container and server expenses. An online algorithm is proposed, integrating a regularization-based approach and stepwise rounding to address this optimization problem efficiently. The regularization approach separates time-dependent container placement and server wake-up costs, requiring only current information and past decisions. The stepwise rounding process generates feasible solutions that meet system constraints, reducing computational costs. Additionally, a competitive ratio proof is provided for the proposed algorithm. Extensive evaluations demonstrate that our approach achieves about 20% performance enhancement compared to baseline algorithms.</abstract><pub>IEEE</pub><doi>10.1109/TSC.2024.3504237</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6268-2559</orcidid><orcidid>https://orcid.org/0000-0001-9245-2626</orcidid><orcidid>https://orcid.org/0000-0002-0994-3297</orcidid><orcidid>https://orcid.org/0000-0003-4819-621X</orcidid><orcidid>https://orcid.org/0000-0002-9375-4818</orcidid><orcidid>https://orcid.org/0000-0003-1000-3937</orcidid><orcidid>https://orcid.org/0009-0000-7661-1922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2024-11, p.1-14
issn 1939-1374
2372-0204
language eng
recordid cdi_crossref_primary_10_1109_TSC_2024_3504237
source IEEE Electronic Library (IEL) Journals
subjects Artificial intelligence
Container placement
Containers
Costs
Delays
Edge computing
Image edge detection
Optimization
Processor scheduling
request scheduling
resource provision
Scheduling
Servers
title Online Layer-Aware Joint Request Scheduling, Container Placement, and Resource Provision in Edge Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Layer-Aware%20Joint%20Request%20Scheduling,%20Container%20Placement,%20and%20Resource%20Provision%20in%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Li,%20Zhenzheng&rft.date=2024-11-20&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2024.3504237&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSC_2024_3504237%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c625-415587de4812c24aa05122701413f09a869e0c4aeffab2032d231de5cb9598af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10759825&rfr_iscdi=true