Loading…

Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation

Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on software engineering 2008-07, Vol.34 (4), p.471-484
Main Authors: Keung, J.W., Kitchenham, B.A., Jeffery, D.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643
cites cdi_FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643
container_end_page 484
container_issue 4
container_start_page 471
container_title IEEE transactions on software engineering
container_volume 34
creator Keung, J.W.
Kitchenham, B.A.
Jeffery, D.R.
description Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heuristic algorithms are necessary to select the best set of variables and identify abnormal project cases. We introduce a solution to these problems based upon the use of the Mantel correlation randomization test called Analogy-X. We use the strength of correlation between the distance matrix of project features and the distance matrix of known effort values of the dataset. The method is demonstrated using the Desharnais dataset and two random datasets, showing (1) the use of Mantel's correlation to identify whether analogy is appropriate, (2) a stepwise procedure for feature selection, as well as (3) the use of a leverage statistic for sensitivity analysis that detects abnormal data points. Analogy-X, thus, provides a sound statistical basis for analogy, removes the need for heuristic search and greatly improves its algorithmic performance.
doi_str_mv 10.1109/TSE.2008.34
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSE_2008_34</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4527255</ieee_id><sourcerecordid>1518047921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643</originalsourceid><addsrcrecordid>eNp90U1Lw0AQBuBFFKzVk0cvwYuCpO7XbHa91VK1UFBoD97CNpmUlDSru6nSf--WqgcPnubyvMMMLyHnjA4Yo-Z2PhsPOKV6IOQB6TEjTCqA00PSo9ToFECbY3ISwopSClkGPTIftrZxy236epe8ePdRl3W7TGad7erQ1YVtkklboce2wKRzyY--twHLZOaq7tN6TEYudMk4BtYx59pTclTZJuDZ9-yT-cN4PnpKp8-Pk9FwmhaSsS6tDM20lVxxYUGXKDSUVaZFablZlMC4kbbiJWIltLZAhVwUgEaVC8m1kqJPrvZr37x732Do8nUdCmwa26LbhNxQoYRQoKK8_lcylTHBjFEQ6eUfunIbH9-OygAoI00W0c0eFd6F4LHK33z83W9zRvNdE3lsIt81kYvdnRd7XSPir5TAMw4gvgBwq4Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195569497</pqid></control><display><type>article</type><title>Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation</title><source>ABI/INFORM Global</source><source>IEEE Electronic Library (IEL) Journals</source><creator>Keung, J.W. ; Kitchenham, B.A. ; Jeffery, D.R.</creator><creatorcontrib>Keung, J.W. ; Kitchenham, B.A. ; Jeffery, D.R.</creatorcontrib><description>Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heuristic algorithms are necessary to select the best set of variables and identify abnormal project cases. We introduce a solution to these problems based upon the use of the Mantel correlation randomization test called Analogy-X. We use the strength of correlation between the distance matrix of project features and the distance matrix of known effort values of the dataset. The method is demonstrated using the Desharnais dataset and two random datasets, showing (1) the use of Mantel's correlation to identify whether analogy is appropriate, (2) a stepwise procedure for feature selection, as well as (3) the use of a leverage statistic for sensitivity analysis that detects abnormal data points. Analogy-X, thus, provides a sound statistical basis for analogy, removes the need for heuristic search and greatly improves its algorithmic performance.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2008.34</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analogies ; Australia ; Automation ; Computer programs ; Computer Society ; Correlation ; Cost estimates ; Cost estimation ; Costs ; Data points ; Datasets ; Digital Object Identifier ; Feature selection ; Heuristic ; Heuristic algorithms ; Inference ; Input variables ; Linear regression ; Management ; Methods ; R&amp;D ; Regression analysis ; Research &amp; development ; Searching ; Sensitivity analysis ; Software ; Software algorithms ; Software Engineering ; Statistical analysis ; Statistical inference ; Statistical methods ; Studies ; Systematic review ; Systems design ; Testing ; Variables</subject><ispartof>IEEE transactions on software engineering, 2008-07, Vol.34 (4), p.471-484</ispartof><rights>Copyright IEEE Computer Society Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643</citedby><cites>FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/195569497?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,54796</link.rule.ids></links><search><creatorcontrib>Keung, J.W.</creatorcontrib><creatorcontrib>Kitchenham, B.A.</creatorcontrib><creatorcontrib>Jeffery, D.R.</creatorcontrib><title>Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heuristic algorithms are necessary to select the best set of variables and identify abnormal project cases. We introduce a solution to these problems based upon the use of the Mantel correlation randomization test called Analogy-X. We use the strength of correlation between the distance matrix of project features and the distance matrix of known effort values of the dataset. The method is demonstrated using the Desharnais dataset and two random datasets, showing (1) the use of Mantel's correlation to identify whether analogy is appropriate, (2) a stepwise procedure for feature selection, as well as (3) the use of a leverage statistic for sensitivity analysis that detects abnormal data points. Analogy-X, thus, provides a sound statistical basis for analogy, removes the need for heuristic search and greatly improves its algorithmic performance.</description><subject>Algorithms</subject><subject>Analogies</subject><subject>Australia</subject><subject>Automation</subject><subject>Computer programs</subject><subject>Computer Society</subject><subject>Correlation</subject><subject>Cost estimates</subject><subject>Cost estimation</subject><subject>Costs</subject><subject>Data points</subject><subject>Datasets</subject><subject>Digital Object Identifier</subject><subject>Feature selection</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Inference</subject><subject>Input variables</subject><subject>Linear regression</subject><subject>Management</subject><subject>Methods</subject><subject>R&amp;D</subject><subject>Regression analysis</subject><subject>Research &amp; development</subject><subject>Searching</subject><subject>Sensitivity analysis</subject><subject>Software</subject><subject>Software algorithms</subject><subject>Software Engineering</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Systematic review</subject><subject>Systems design</subject><subject>Testing</subject><subject>Variables</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp90U1Lw0AQBuBFFKzVk0cvwYuCpO7XbHa91VK1UFBoD97CNpmUlDSru6nSf--WqgcPnubyvMMMLyHnjA4Yo-Z2PhsPOKV6IOQB6TEjTCqA00PSo9ToFECbY3ISwopSClkGPTIftrZxy236epe8ePdRl3W7TGad7erQ1YVtkklboce2wKRzyY--twHLZOaq7tN6TEYudMk4BtYx59pTclTZJuDZ9-yT-cN4PnpKp8-Pk9FwmhaSsS6tDM20lVxxYUGXKDSUVaZFablZlMC4kbbiJWIltLZAhVwUgEaVC8m1kqJPrvZr37x732Do8nUdCmwa26LbhNxQoYRQoKK8_lcylTHBjFEQ6eUfunIbH9-OygAoI00W0c0eFd6F4LHK33z83W9zRvNdE3lsIt81kYvdnRd7XSPir5TAMw4gvgBwq4Lg</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Keung, J.W.</creator><creator>Kitchenham, B.A.</creator><creator>Jeffery, D.R.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080701</creationdate><title>Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation</title><author>Keung, J.W. ; Kitchenham, B.A. ; Jeffery, D.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Analogies</topic><topic>Australia</topic><topic>Automation</topic><topic>Computer programs</topic><topic>Computer Society</topic><topic>Correlation</topic><topic>Cost estimates</topic><topic>Cost estimation</topic><topic>Costs</topic><topic>Data points</topic><topic>Datasets</topic><topic>Digital Object Identifier</topic><topic>Feature selection</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Inference</topic><topic>Input variables</topic><topic>Linear regression</topic><topic>Management</topic><topic>Methods</topic><topic>R&amp;D</topic><topic>Regression analysis</topic><topic>Research &amp; development</topic><topic>Searching</topic><topic>Sensitivity analysis</topic><topic>Software</topic><topic>Software algorithms</topic><topic>Software Engineering</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Systematic review</topic><topic>Systems design</topic><topic>Testing</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keung, J.W.</creatorcontrib><creatorcontrib>Kitchenham, B.A.</creatorcontrib><creatorcontrib>Jeffery, D.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keung, J.W.</au><au>Kitchenham, B.A.</au><au>Jeffery, D.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>34</volume><issue>4</issue><spage>471</spage><epage>484</epage><pages>471-484</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heuristic algorithms are necessary to select the best set of variables and identify abnormal project cases. We introduce a solution to these problems based upon the use of the Mantel correlation randomization test called Analogy-X. We use the strength of correlation between the distance matrix of project features and the distance matrix of known effort values of the dataset. The method is demonstrated using the Desharnais dataset and two random datasets, showing (1) the use of Mantel's correlation to identify whether analogy is appropriate, (2) a stepwise procedure for feature selection, as well as (3) the use of a leverage statistic for sensitivity analysis that detects abnormal data points. Analogy-X, thus, provides a sound statistical basis for analogy, removes the need for heuristic search and greatly improves its algorithmic performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2008.34</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-5589
ispartof IEEE transactions on software engineering, 2008-07, Vol.34 (4), p.471-484
issn 0098-5589
1939-3520
language eng
recordid cdi_crossref_primary_10_1109_TSE_2008_34
source ABI/INFORM Global; IEEE Electronic Library (IEL) Journals
subjects Algorithms
Analogies
Australia
Automation
Computer programs
Computer Society
Correlation
Cost estimates
Cost estimation
Costs
Data points
Datasets
Digital Object Identifier
Feature selection
Heuristic
Heuristic algorithms
Inference
Input variables
Linear regression
Management
Methods
R&D
Regression analysis
Research & development
Searching
Sensitivity analysis
Software
Software algorithms
Software Engineering
Statistical analysis
Statistical inference
Statistical methods
Studies
Systematic review
Systems design
Testing
Variables
title Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analogy-X:%20Providing%20Statistical%20Inference%20to%20Analogy-Based%20Software%20Cost%20Estimation&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Keung,%20J.W.&rft.date=2008-07-01&rft.volume=34&rft.issue=4&rft.spage=471&rft.epage=484&rft.pages=471-484&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2008.34&rft_dat=%3Cproquest_cross%3E1518047921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195569497&rft_id=info:pmid/&rft_ieee_id=4527255&rfr_iscdi=true