Loading…
Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation
Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heur...
Saved in:
Published in: | IEEE transactions on software engineering 2008-07, Vol.34 (4), p.471-484 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643 |
container_end_page | 484 |
container_issue | 4 |
container_start_page | 471 |
container_title | IEEE transactions on software engineering |
container_volume | 34 |
creator | Keung, J.W. Kitchenham, B.A. Jeffery, D.R. |
description | Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heuristic algorithms are necessary to select the best set of variables and identify abnormal project cases. We introduce a solution to these problems based upon the use of the Mantel correlation randomization test called Analogy-X. We use the strength of correlation between the distance matrix of project features and the distance matrix of known effort values of the dataset. The method is demonstrated using the Desharnais dataset and two random datasets, showing (1) the use of Mantel's correlation to identify whether analogy is appropriate, (2) a stepwise procedure for feature selection, as well as (3) the use of a leverage statistic for sensitivity analysis that detects abnormal data points. Analogy-X, thus, provides a sound statistical basis for analogy, removes the need for heuristic search and greatly improves its algorithmic performance. |
doi_str_mv | 10.1109/TSE.2008.34 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSE_2008_34</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4527255</ieee_id><sourcerecordid>1518047921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643</originalsourceid><addsrcrecordid>eNp90U1Lw0AQBuBFFKzVk0cvwYuCpO7XbHa91VK1UFBoD97CNpmUlDSru6nSf--WqgcPnubyvMMMLyHnjA4Yo-Z2PhsPOKV6IOQB6TEjTCqA00PSo9ToFECbY3ISwopSClkGPTIftrZxy236epe8ePdRl3W7TGad7erQ1YVtkklboce2wKRzyY--twHLZOaq7tN6TEYudMk4BtYx59pTclTZJuDZ9-yT-cN4PnpKp8-Pk9FwmhaSsS6tDM20lVxxYUGXKDSUVaZFablZlMC4kbbiJWIltLZAhVwUgEaVC8m1kqJPrvZr37x732Do8nUdCmwa26LbhNxQoYRQoKK8_lcylTHBjFEQ6eUfunIbH9-OygAoI00W0c0eFd6F4LHK33z83W9zRvNdE3lsIt81kYvdnRd7XSPir5TAMw4gvgBwq4Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195569497</pqid></control><display><type>article</type><title>Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation</title><source>ABI/INFORM Global</source><source>IEEE Electronic Library (IEL) Journals</source><creator>Keung, J.W. ; Kitchenham, B.A. ; Jeffery, D.R.</creator><creatorcontrib>Keung, J.W. ; Kitchenham, B.A. ; Jeffery, D.R.</creatorcontrib><description>Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heuristic algorithms are necessary to select the best set of variables and identify abnormal project cases. We introduce a solution to these problems based upon the use of the Mantel correlation randomization test called Analogy-X. We use the strength of correlation between the distance matrix of project features and the distance matrix of known effort values of the dataset. The method is demonstrated using the Desharnais dataset and two random datasets, showing (1) the use of Mantel's correlation to identify whether analogy is appropriate, (2) a stepwise procedure for feature selection, as well as (3) the use of a leverage statistic for sensitivity analysis that detects abnormal data points. Analogy-X, thus, provides a sound statistical basis for analogy, removes the need for heuristic search and greatly improves its algorithmic performance.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2008.34</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analogies ; Australia ; Automation ; Computer programs ; Computer Society ; Correlation ; Cost estimates ; Cost estimation ; Costs ; Data points ; Datasets ; Digital Object Identifier ; Feature selection ; Heuristic ; Heuristic algorithms ; Inference ; Input variables ; Linear regression ; Management ; Methods ; R&D ; Regression analysis ; Research & development ; Searching ; Sensitivity analysis ; Software ; Software algorithms ; Software Engineering ; Statistical analysis ; Statistical inference ; Statistical methods ; Studies ; Systematic review ; Systems design ; Testing ; Variables</subject><ispartof>IEEE transactions on software engineering, 2008-07, Vol.34 (4), p.471-484</ispartof><rights>Copyright IEEE Computer Society Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643</citedby><cites>FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/195569497?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,54796</link.rule.ids></links><search><creatorcontrib>Keung, J.W.</creatorcontrib><creatorcontrib>Kitchenham, B.A.</creatorcontrib><creatorcontrib>Jeffery, D.R.</creatorcontrib><title>Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heuristic algorithms are necessary to select the best set of variables and identify abnormal project cases. We introduce a solution to these problems based upon the use of the Mantel correlation randomization test called Analogy-X. We use the strength of correlation between the distance matrix of project features and the distance matrix of known effort values of the dataset. The method is demonstrated using the Desharnais dataset and two random datasets, showing (1) the use of Mantel's correlation to identify whether analogy is appropriate, (2) a stepwise procedure for feature selection, as well as (3) the use of a leverage statistic for sensitivity analysis that detects abnormal data points. Analogy-X, thus, provides a sound statistical basis for analogy, removes the need for heuristic search and greatly improves its algorithmic performance.</description><subject>Algorithms</subject><subject>Analogies</subject><subject>Australia</subject><subject>Automation</subject><subject>Computer programs</subject><subject>Computer Society</subject><subject>Correlation</subject><subject>Cost estimates</subject><subject>Cost estimation</subject><subject>Costs</subject><subject>Data points</subject><subject>Datasets</subject><subject>Digital Object Identifier</subject><subject>Feature selection</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Inference</subject><subject>Input variables</subject><subject>Linear regression</subject><subject>Management</subject><subject>Methods</subject><subject>R&D</subject><subject>Regression analysis</subject><subject>Research & development</subject><subject>Searching</subject><subject>Sensitivity analysis</subject><subject>Software</subject><subject>Software algorithms</subject><subject>Software Engineering</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Systematic review</subject><subject>Systems design</subject><subject>Testing</subject><subject>Variables</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp90U1Lw0AQBuBFFKzVk0cvwYuCpO7XbHa91VK1UFBoD97CNpmUlDSru6nSf--WqgcPnubyvMMMLyHnjA4Yo-Z2PhsPOKV6IOQB6TEjTCqA00PSo9ToFECbY3ISwopSClkGPTIftrZxy236epe8ePdRl3W7TGad7erQ1YVtkklboce2wKRzyY--twHLZOaq7tN6TEYudMk4BtYx59pTclTZJuDZ9-yT-cN4PnpKp8-Pk9FwmhaSsS6tDM20lVxxYUGXKDSUVaZFablZlMC4kbbiJWIltLZAhVwUgEaVC8m1kqJPrvZr37x732Do8nUdCmwa26LbhNxQoYRQoKK8_lcylTHBjFEQ6eUfunIbH9-OygAoI00W0c0eFd6F4LHK33z83W9zRvNdE3lsIt81kYvdnRd7XSPir5TAMw4gvgBwq4Lg</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Keung, J.W.</creator><creator>Kitchenham, B.A.</creator><creator>Jeffery, D.R.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080701</creationdate><title>Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation</title><author>Keung, J.W. ; Kitchenham, B.A. ; Jeffery, D.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Analogies</topic><topic>Australia</topic><topic>Automation</topic><topic>Computer programs</topic><topic>Computer Society</topic><topic>Correlation</topic><topic>Cost estimates</topic><topic>Cost estimation</topic><topic>Costs</topic><topic>Data points</topic><topic>Datasets</topic><topic>Digital Object Identifier</topic><topic>Feature selection</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Inference</topic><topic>Input variables</topic><topic>Linear regression</topic><topic>Management</topic><topic>Methods</topic><topic>R&D</topic><topic>Regression analysis</topic><topic>Research & development</topic><topic>Searching</topic><topic>Sensitivity analysis</topic><topic>Software</topic><topic>Software algorithms</topic><topic>Software Engineering</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Systematic review</topic><topic>Systems design</topic><topic>Testing</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keung, J.W.</creatorcontrib><creatorcontrib>Kitchenham, B.A.</creatorcontrib><creatorcontrib>Jeffery, D.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keung, J.W.</au><au>Kitchenham, B.A.</au><au>Jeffery, D.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>34</volume><issue>4</issue><spage>471</spage><epage>484</epage><pages>471-484</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heuristic algorithms are necessary to select the best set of variables and identify abnormal project cases. We introduce a solution to these problems based upon the use of the Mantel correlation randomization test called Analogy-X. We use the strength of correlation between the distance matrix of project features and the distance matrix of known effort values of the dataset. The method is demonstrated using the Desharnais dataset and two random datasets, showing (1) the use of Mantel's correlation to identify whether analogy is appropriate, (2) a stepwise procedure for feature selection, as well as (3) the use of a leverage statistic for sensitivity analysis that detects abnormal data points. Analogy-X, thus, provides a sound statistical basis for analogy, removes the need for heuristic search and greatly improves its algorithmic performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2008.34</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-5589 |
ispartof | IEEE transactions on software engineering, 2008-07, Vol.34 (4), p.471-484 |
issn | 0098-5589 1939-3520 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSE_2008_34 |
source | ABI/INFORM Global; IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Analogies Australia Automation Computer programs Computer Society Correlation Cost estimates Cost estimation Costs Data points Datasets Digital Object Identifier Feature selection Heuristic Heuristic algorithms Inference Input variables Linear regression Management Methods R&D Regression analysis Research & development Searching Sensitivity analysis Software Software algorithms Software Engineering Statistical analysis Statistical inference Statistical methods Studies Systematic review Systems design Testing Variables |
title | Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analogy-X:%20Providing%20Statistical%20Inference%20to%20Analogy-Based%20Software%20Cost%20Estimation&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Keung,%20J.W.&rft.date=2008-07-01&rft.volume=34&rft.issue=4&rft.spage=471&rft.epage=484&rft.pages=471-484&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2008.34&rft_dat=%3Cproquest_cross%3E1518047921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-f9078a42623a58de385df783da29bd51294af2deef388a5034bc5e96db428643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195569497&rft_id=info:pmid/&rft_ieee_id=4527255&rfr_iscdi=true |