Loading…

Looking For Novelty in Search-Based Software Product Line Testing

Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the t t -wise coverage. In this context, one of the primary g...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on software engineering 2022-07, Vol.48 (7), p.2317-2338
Main Authors: Xiang, Yi, Huang, Han, Li, Miqing, Li, Sizhe, Yang, Xiaowei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3
cites cdi_FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3
container_end_page 2338
container_issue 7
container_start_page 2317
container_title IEEE transactions on software engineering
container_volume 48
creator Xiang, Yi
Huang, Han
Li, Miqing
Li, Sizhe
Yang, Xiaowei
description Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the t t -wise coverage. In this context, one of the primary goals is to sample, by optimizing similarity metrics using search-based algorithms, a small subset of test cases (i.e., products) as dissimilar as possible, thus potentially making more t t -wise combinations covered. Prior work has shown, by means of empirical studies, the great potential of current similarity-based testing approaches. However, the rationale of this testing technique deserves a more rigorous exploration. To this end, we perform correlation analyses to investigate how similarity metrics are correlated with the t t -wise coverage. We find that similarity metrics generally have significantly positive correlations with the t t -wise coverage. This well explains why similarity-based testing works, as the improvement on similarity metrics will potentially increase the t t -wise coverage. Moreover, we explore, for the first time, the use of the novelty search (NS) algorithm for similarity-based SPL testing. The algorithm rewards "novel" individuals, i.e., those being different from individuals discovered previously, and this well matches the goal of similarity-based SPL testing. We find that the novelty score used in NS has (much) stronger positive correlations with the t t -wise coverage than previ
doi_str_mv 10.1109/TSE.2021.3057853
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSE_2021_3057853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9350184</ieee_id><sourcerecordid>2689806558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwI7FYYk6xc7ETj6VqASkCpJbZspMLpJS42Amo_x5XrZhued99d4-Qa84mnDN1t1rOJylL-QSYyAsBJ2TEFagERMpOyYgxVSRCFOqcXISwZixSuRiRaencZ9u904Xz9Nn94Kbf0bajSzS--kjuTcCaLl3T_xqP9NW7eqh6WrYd0hWGPiYvyVljNgGvjnNM3hbz1ewxKV8enmbTMqkAoE9qUVTxLiG5zXJoAKFR1loRhzS5knWaG2mUzJoqsyiVVWCgSVFVdZ7LzMKY3B72br37HmK3XrvBd7FSp7JQBZPxvUixA1V5F4LHRm99-2X8TnOm96J0FKX3ovRRVIzcHCItIv7jCgTjRQZ_x8xjHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689806558</pqid></control><display><type>article</type><title>Looking For Novelty in Search-Based Software Product Line Testing</title><source>IEEE Xplore (Online service)</source><creator>Xiang, Yi ; Huang, Han ; Li, Miqing ; Li, Sizhe ; Yang, Xiaowei</creator><creatorcontrib>Xiang, Yi ; Huang, Han ; Li, Miqing ; Li, Sizhe ; Yang, Xiaowei</creatorcontrib><description><![CDATA[Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq1-3057853.gif"/> </inline-formula>-wise coverage. In this context, one of the primary goals is to sample, by optimizing similarity metrics using search-based algorithms, a small subset of test cases (i.e., products) as dissimilar as possible, thus potentially making more <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq2-3057853.gif"/> </inline-formula>-wise combinations covered. Prior work has shown, by means of empirical studies, the great potential of current similarity-based testing approaches. However, the rationale of this testing technique deserves a more rigorous exploration. To this end, we perform correlation analyses to investigate how similarity metrics are correlated with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq3-3057853.gif"/> </inline-formula>-wise coverage. We find that similarity metrics generally have significantly positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq4-3057853.gif"/> </inline-formula>-wise coverage. This well explains why similarity-based testing works, as the improvement on similarity metrics will potentially increase the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq5-3057853.gif"/> </inline-formula>-wise coverage. Moreover, we explore, for the first time, the use of the novelty search (NS) algorithm for similarity-based SPL testing. The algorithm rewards "novel" individuals, i.e., those being different from individuals discovered previously, and this well matches the goal of similarity-based SPL testing. We find that the novelty score used in NS has (much) stronger positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq6-3057853.gif"/> </inline-formula>-wise coverage than previous approaches relying on a genetic algorithm (GA) with a similarity-based fitness function. Experimental results on 31 software product lines validate the superiority of NS over GA, as well as other state-of-the-art approaches, concerning both <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq7-3057853.gif"/> </inline-formula>-wise coverage and fault detection capacity. Finally, we investigate whether it is useful to combine two satisfiability solvers when generating new individuals in NS, and how the performance of NS is affected by its key parameters. In summary, looking for novelty provides a promising way of sampling diverse test cases for SPLs.]]></description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2021.3057853</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="kwd" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> <mml:math> <mml:mi>t</mml:mi> </mml:math> <inline-graphic xlink:href="xiang-ieq8-3057853.gif" xlink:type="simple"/> </inline-formula> </named-content>-wise coverage ; Algorithms ; Correlation ; Correlation analysis ; Empirical analysis ; Fault detection ; Frequency modulation ; Genetic algorithms ; Measurement ; novelty search ; Product lines ; product sampling ; Searching ; Similarity ; similarity-based testing ; Software ; Software development ; Software product line testing ; Software product lines ; Testing]]></subject><ispartof>IEEE transactions on software engineering, 2022-07, Vol.48 (7), p.2317-2338</ispartof><rights>Copyright IEEE Computer Society 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3</citedby><cites>FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3</cites><orcidid>0000-0003-1617-4147 ; 0000-0003-2118-4825 ; 0000-0002-8607-9607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9350184$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xiang, Yi</creatorcontrib><creatorcontrib>Huang, Han</creatorcontrib><creatorcontrib>Li, Miqing</creatorcontrib><creatorcontrib>Li, Sizhe</creatorcontrib><creatorcontrib>Yang, Xiaowei</creatorcontrib><title>Looking For Novelty in Search-Based Software Product Line Testing</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description><![CDATA[Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq1-3057853.gif"/> </inline-formula>-wise coverage. In this context, one of the primary goals is to sample, by optimizing similarity metrics using search-based algorithms, a small subset of test cases (i.e., products) as dissimilar as possible, thus potentially making more <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq2-3057853.gif"/> </inline-formula>-wise combinations covered. Prior work has shown, by means of empirical studies, the great potential of current similarity-based testing approaches. However, the rationale of this testing technique deserves a more rigorous exploration. To this end, we perform correlation analyses to investigate how similarity metrics are correlated with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq3-3057853.gif"/> </inline-formula>-wise coverage. We find that similarity metrics generally have significantly positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq4-3057853.gif"/> </inline-formula>-wise coverage. This well explains why similarity-based testing works, as the improvement on similarity metrics will potentially increase the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq5-3057853.gif"/> </inline-formula>-wise coverage. Moreover, we explore, for the first time, the use of the novelty search (NS) algorithm for similarity-based SPL testing. The algorithm rewards "novel" individuals, i.e., those being different from individuals discovered previously, and this well matches the goal of similarity-based SPL testing. We find that the novelty score used in NS has (much) stronger positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq6-3057853.gif"/> </inline-formula>-wise coverage than previous approaches relying on a genetic algorithm (GA) with a similarity-based fitness function. Experimental results on 31 software product lines validate the superiority of NS over GA, as well as other state-of-the-art approaches, concerning both <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq7-3057853.gif"/> </inline-formula>-wise coverage and fault detection capacity. Finally, we investigate whether it is useful to combine two satisfiability solvers when generating new individuals in NS, and how the performance of NS is affected by its key parameters. In summary, looking for novelty provides a promising way of sampling diverse test cases for SPLs.]]></description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="kwd" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> <mml:math> <mml:mi>t</mml:mi> </mml:math> <inline-graphic xlink:href="xiang-ieq8-3057853.gif" xlink:type="simple"/> </inline-formula> </named-content>-wise coverage]]></subject><subject>Algorithms</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Empirical analysis</subject><subject>Fault detection</subject><subject>Frequency modulation</subject><subject>Genetic algorithms</subject><subject>Measurement</subject><subject>novelty search</subject><subject>Product lines</subject><subject>product sampling</subject><subject>Searching</subject><subject>Similarity</subject><subject>similarity-based testing</subject><subject>Software</subject><subject>Software development</subject><subject>Software product line testing</subject><subject>Software product lines</subject><subject>Testing</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EEqWwI7FYYk6xc7ETj6VqASkCpJbZspMLpJS42Amo_x5XrZhued99d4-Qa84mnDN1t1rOJylL-QSYyAsBJ2TEFagERMpOyYgxVSRCFOqcXISwZixSuRiRaencZ9u904Xz9Nn94Kbf0bajSzS--kjuTcCaLl3T_xqP9NW7eqh6WrYd0hWGPiYvyVljNgGvjnNM3hbz1ewxKV8enmbTMqkAoE9qUVTxLiG5zXJoAKFR1loRhzS5knWaG2mUzJoqsyiVVWCgSVFVdZ7LzMKY3B72br37HmK3XrvBd7FSp7JQBZPxvUixA1V5F4LHRm99-2X8TnOm96J0FKX3ovRRVIzcHCItIv7jCgTjRQZ_x8xjHg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Xiang, Yi</creator><creator>Huang, Han</creator><creator>Li, Miqing</creator><creator>Li, Sizhe</creator><creator>Yang, Xiaowei</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-1617-4147</orcidid><orcidid>https://orcid.org/0000-0003-2118-4825</orcidid><orcidid>https://orcid.org/0000-0002-8607-9607</orcidid></search><sort><creationdate>20220701</creationdate><title>Looking For Novelty in Search-Based Software Product Line Testing</title><author>Xiang, Yi ; Huang, Han ; Li, Miqing ; Li, Sizhe ; Yang, Xiaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="kwd" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> <mml:math> <mml:mi>t</mml:mi> </mml:math> <inline-graphic xlink:href="xiang-ieq8-3057853.gif" xlink:type="simple"/> </inline-formula> </named-content>-wise coverage]]></topic><topic>Algorithms</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Empirical analysis</topic><topic>Fault detection</topic><topic>Frequency modulation</topic><topic>Genetic algorithms</topic><topic>Measurement</topic><topic>novelty search</topic><topic>Product lines</topic><topic>product sampling</topic><topic>Searching</topic><topic>Similarity</topic><topic>similarity-based testing</topic><topic>Software</topic><topic>Software development</topic><topic>Software product line testing</topic><topic>Software product lines</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yi</creatorcontrib><creatorcontrib>Huang, Han</creatorcontrib><creatorcontrib>Li, Miqing</creatorcontrib><creatorcontrib>Li, Sizhe</creatorcontrib><creatorcontrib>Yang, Xiaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yi</au><au>Huang, Han</au><au>Li, Miqing</au><au>Li, Sizhe</au><au>Yang, Xiaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Looking For Novelty in Search-Based Software Product Line Testing</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>48</volume><issue>7</issue><spage>2317</spage><epage>2338</epage><pages>2317-2338</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract><![CDATA[Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq1-3057853.gif"/> </inline-formula>-wise coverage. In this context, one of the primary goals is to sample, by optimizing similarity metrics using search-based algorithms, a small subset of test cases (i.e., products) as dissimilar as possible, thus potentially making more <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq2-3057853.gif"/> </inline-formula>-wise combinations covered. Prior work has shown, by means of empirical studies, the great potential of current similarity-based testing approaches. However, the rationale of this testing technique deserves a more rigorous exploration. To this end, we perform correlation analyses to investigate how similarity metrics are correlated with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq3-3057853.gif"/> </inline-formula>-wise coverage. We find that similarity metrics generally have significantly positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq4-3057853.gif"/> </inline-formula>-wise coverage. This well explains why similarity-based testing works, as the improvement on similarity metrics will potentially increase the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq5-3057853.gif"/> </inline-formula>-wise coverage. Moreover, we explore, for the first time, the use of the novelty search (NS) algorithm for similarity-based SPL testing. The algorithm rewards "novel" individuals, i.e., those being different from individuals discovered previously, and this well matches the goal of similarity-based SPL testing. We find that the novelty score used in NS has (much) stronger positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq6-3057853.gif"/> </inline-formula>-wise coverage than previous approaches relying on a genetic algorithm (GA) with a similarity-based fitness function. Experimental results on 31 software product lines validate the superiority of NS over GA, as well as other state-of-the-art approaches, concerning both <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq7-3057853.gif"/> </inline-formula>-wise coverage and fault detection capacity. Finally, we investigate whether it is useful to combine two satisfiability solvers when generating new individuals in NS, and how the performance of NS is affected by its key parameters. In summary, looking for novelty provides a promising way of sampling diverse test cases for SPLs.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2021.3057853</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1617-4147</orcidid><orcidid>https://orcid.org/0000-0003-2118-4825</orcidid><orcidid>https://orcid.org/0000-0002-8607-9607</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-5589
ispartof IEEE transactions on software engineering, 2022-07, Vol.48 (7), p.2317-2338
issn 0098-5589
1939-3520
language eng
recordid cdi_crossref_primary_10_1109_TSE_2021_3057853
source IEEE Xplore (Online service)
subjects <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="kwd" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> <mml:math> <mml:mi>t</mml:mi> </mml:math> <inline-graphic xlink:href="xiang-ieq8-3057853.gif" xlink:type="simple"/> </inline-formula> </named-content>-wise coverage
Algorithms
Correlation
Correlation analysis
Empirical analysis
Fault detection
Frequency modulation
Genetic algorithms
Measurement
novelty search
Product lines
product sampling
Searching
Similarity
similarity-based testing
Software
Software development
Software product line testing
Software product lines
Testing
title Looking For Novelty in Search-Based Software Product Line Testing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Looking%20For%20Novelty%20in%20Search-Based%20Software%20Product%20Line%20Testing&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Xiang,%20Yi&rft.date=2022-07-01&rft.volume=48&rft.issue=7&rft.spage=2317&rft.epage=2338&rft.pages=2317-2338&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2021.3057853&rft_dat=%3Cproquest_cross%3E2689806558%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689806558&rft_id=info:pmid/&rft_ieee_id=9350184&rfr_iscdi=true