Loading…
Looking For Novelty in Search-Based Software Product Line Testing
Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the t t -wise coverage. In this context, one of the primary g...
Saved in:
Published in: | IEEE transactions on software engineering 2022-07, Vol.48 (7), p.2317-2338 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3 |
container_end_page | 2338 |
container_issue | 7 |
container_start_page | 2317 |
container_title | IEEE transactions on software engineering |
container_volume | 48 |
creator | Xiang, Yi Huang, Han Li, Miqing Li, Sizhe Yang, Xiaowei |
description | Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the t t -wise coverage. In this context, one of the primary goals is to sample, by optimizing similarity metrics using search-based algorithms, a small subset of test cases (i.e., products) as dissimilar as possible, thus potentially making more t t -wise combinations covered. Prior work has shown, by means of empirical studies, the great potential of current similarity-based testing approaches. However, the rationale of this testing technique deserves a more rigorous exploration. To this end, we perform correlation analyses to investigate how similarity metrics are correlated with the t t -wise coverage. We find that similarity metrics generally have significantly positive correlations with the t t -wise coverage. This well explains why similarity-based testing works, as the improvement on similarity metrics will potentially increase the t t -wise coverage. Moreover, we explore, for the first time, the use of the novelty search (NS) algorithm for similarity-based SPL testing. The algorithm rewards "novel" individuals, i.e., those being different from individuals discovered previously, and this well matches the goal of similarity-based SPL testing. We find that the novelty score used in NS has (much) stronger positive correlations with the t t -wise coverage than previ |
doi_str_mv | 10.1109/TSE.2021.3057853 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSE_2021_3057853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9350184</ieee_id><sourcerecordid>2689806558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwI7FYYk6xc7ETj6VqASkCpJbZspMLpJS42Amo_x5XrZhued99d4-Qa84mnDN1t1rOJylL-QSYyAsBJ2TEFagERMpOyYgxVSRCFOqcXISwZixSuRiRaencZ9u904Xz9Nn94Kbf0bajSzS--kjuTcCaLl3T_xqP9NW7eqh6WrYd0hWGPiYvyVljNgGvjnNM3hbz1ewxKV8enmbTMqkAoE9qUVTxLiG5zXJoAKFR1loRhzS5knWaG2mUzJoqsyiVVWCgSVFVdZ7LzMKY3B72br37HmK3XrvBd7FSp7JQBZPxvUixA1V5F4LHRm99-2X8TnOm96J0FKX3ovRRVIzcHCItIv7jCgTjRQZ_x8xjHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689806558</pqid></control><display><type>article</type><title>Looking For Novelty in Search-Based Software Product Line Testing</title><source>IEEE Xplore (Online service)</source><creator>Xiang, Yi ; Huang, Han ; Li, Miqing ; Li, Sizhe ; Yang, Xiaowei</creator><creatorcontrib>Xiang, Yi ; Huang, Han ; Li, Miqing ; Li, Sizhe ; Yang, Xiaowei</creatorcontrib><description><![CDATA[Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq1-3057853.gif"/> </inline-formula>-wise coverage. In this context, one of the primary goals is to sample, by optimizing similarity metrics using search-based algorithms, a small subset of test cases (i.e., products) as dissimilar as possible, thus potentially making more <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq2-3057853.gif"/> </inline-formula>-wise combinations covered. Prior work has shown, by means of empirical studies, the great potential of current similarity-based testing approaches. However, the rationale of this testing technique deserves a more rigorous exploration. To this end, we perform correlation analyses to investigate how similarity metrics are correlated with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq3-3057853.gif"/> </inline-formula>-wise coverage. We find that similarity metrics generally have significantly positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq4-3057853.gif"/> </inline-formula>-wise coverage. This well explains why similarity-based testing works, as the improvement on similarity metrics will potentially increase the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq5-3057853.gif"/> </inline-formula>-wise coverage. Moreover, we explore, for the first time, the use of the novelty search (NS) algorithm for similarity-based SPL testing. The algorithm rewards "novel" individuals, i.e., those being different from individuals discovered previously, and this well matches the goal of similarity-based SPL testing. We find that the novelty score used in NS has (much) stronger positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq6-3057853.gif"/> </inline-formula>-wise coverage than previous approaches relying on a genetic algorithm (GA) with a similarity-based fitness function. Experimental results on 31 software product lines validate the superiority of NS over GA, as well as other state-of-the-art approaches, concerning both <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq7-3057853.gif"/> </inline-formula>-wise coverage and fault detection capacity. Finally, we investigate whether it is useful to combine two satisfiability solvers when generating new individuals in NS, and how the performance of NS is affected by its key parameters. In summary, looking for novelty provides a promising way of sampling diverse test cases for SPLs.]]></description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2021.3057853</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="kwd" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> <mml:math> <mml:mi>t</mml:mi> </mml:math> <inline-graphic xlink:href="xiang-ieq8-3057853.gif" xlink:type="simple"/> </inline-formula> </named-content>-wise coverage ; Algorithms ; Correlation ; Correlation analysis ; Empirical analysis ; Fault detection ; Frequency modulation ; Genetic algorithms ; Measurement ; novelty search ; Product lines ; product sampling ; Searching ; Similarity ; similarity-based testing ; Software ; Software development ; Software product line testing ; Software product lines ; Testing]]></subject><ispartof>IEEE transactions on software engineering, 2022-07, Vol.48 (7), p.2317-2338</ispartof><rights>Copyright IEEE Computer Society 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3</citedby><cites>FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3</cites><orcidid>0000-0003-1617-4147 ; 0000-0003-2118-4825 ; 0000-0002-8607-9607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9350184$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xiang, Yi</creatorcontrib><creatorcontrib>Huang, Han</creatorcontrib><creatorcontrib>Li, Miqing</creatorcontrib><creatorcontrib>Li, Sizhe</creatorcontrib><creatorcontrib>Yang, Xiaowei</creatorcontrib><title>Looking For Novelty in Search-Based Software Product Line Testing</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description><![CDATA[Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq1-3057853.gif"/> </inline-formula>-wise coverage. In this context, one of the primary goals is to sample, by optimizing similarity metrics using search-based algorithms, a small subset of test cases (i.e., products) as dissimilar as possible, thus potentially making more <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq2-3057853.gif"/> </inline-formula>-wise combinations covered. Prior work has shown, by means of empirical studies, the great potential of current similarity-based testing approaches. However, the rationale of this testing technique deserves a more rigorous exploration. To this end, we perform correlation analyses to investigate how similarity metrics are correlated with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq3-3057853.gif"/> </inline-formula>-wise coverage. We find that similarity metrics generally have significantly positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq4-3057853.gif"/> </inline-formula>-wise coverage. This well explains why similarity-based testing works, as the improvement on similarity metrics will potentially increase the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq5-3057853.gif"/> </inline-formula>-wise coverage. Moreover, we explore, for the first time, the use of the novelty search (NS) algorithm for similarity-based SPL testing. The algorithm rewards "novel" individuals, i.e., those being different from individuals discovered previously, and this well matches the goal of similarity-based SPL testing. We find that the novelty score used in NS has (much) stronger positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq6-3057853.gif"/> </inline-formula>-wise coverage than previous approaches relying on a genetic algorithm (GA) with a similarity-based fitness function. Experimental results on 31 software product lines validate the superiority of NS over GA, as well as other state-of-the-art approaches, concerning both <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq7-3057853.gif"/> </inline-formula>-wise coverage and fault detection capacity. Finally, we investigate whether it is useful to combine two satisfiability solvers when generating new individuals in NS, and how the performance of NS is affected by its key parameters. In summary, looking for novelty provides a promising way of sampling diverse test cases for SPLs.]]></description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="kwd" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> <mml:math> <mml:mi>t</mml:mi> </mml:math> <inline-graphic xlink:href="xiang-ieq8-3057853.gif" xlink:type="simple"/> </inline-formula> </named-content>-wise coverage]]></subject><subject>Algorithms</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Empirical analysis</subject><subject>Fault detection</subject><subject>Frequency modulation</subject><subject>Genetic algorithms</subject><subject>Measurement</subject><subject>novelty search</subject><subject>Product lines</subject><subject>product sampling</subject><subject>Searching</subject><subject>Similarity</subject><subject>similarity-based testing</subject><subject>Software</subject><subject>Software development</subject><subject>Software product line testing</subject><subject>Software product lines</subject><subject>Testing</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EEqWwI7FYYk6xc7ETj6VqASkCpJbZspMLpJS42Amo_x5XrZhued99d4-Qa84mnDN1t1rOJylL-QSYyAsBJ2TEFagERMpOyYgxVSRCFOqcXISwZixSuRiRaencZ9u904Xz9Nn94Kbf0bajSzS--kjuTcCaLl3T_xqP9NW7eqh6WrYd0hWGPiYvyVljNgGvjnNM3hbz1ewxKV8enmbTMqkAoE9qUVTxLiG5zXJoAKFR1loRhzS5knWaG2mUzJoqsyiVVWCgSVFVdZ7LzMKY3B72br37HmK3XrvBd7FSp7JQBZPxvUixA1V5F4LHRm99-2X8TnOm96J0FKX3ovRRVIzcHCItIv7jCgTjRQZ_x8xjHg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Xiang, Yi</creator><creator>Huang, Han</creator><creator>Li, Miqing</creator><creator>Li, Sizhe</creator><creator>Yang, Xiaowei</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-1617-4147</orcidid><orcidid>https://orcid.org/0000-0003-2118-4825</orcidid><orcidid>https://orcid.org/0000-0002-8607-9607</orcidid></search><sort><creationdate>20220701</creationdate><title>Looking For Novelty in Search-Based Software Product Line Testing</title><author>Xiang, Yi ; Huang, Han ; Li, Miqing ; Li, Sizhe ; Yang, Xiaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="kwd" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> <mml:math> <mml:mi>t</mml:mi> </mml:math> <inline-graphic xlink:href="xiang-ieq8-3057853.gif" xlink:type="simple"/> </inline-formula> </named-content>-wise coverage]]></topic><topic>Algorithms</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Empirical analysis</topic><topic>Fault detection</topic><topic>Frequency modulation</topic><topic>Genetic algorithms</topic><topic>Measurement</topic><topic>novelty search</topic><topic>Product lines</topic><topic>product sampling</topic><topic>Searching</topic><topic>Similarity</topic><topic>similarity-based testing</topic><topic>Software</topic><topic>Software development</topic><topic>Software product line testing</topic><topic>Software product lines</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yi</creatorcontrib><creatorcontrib>Huang, Han</creatorcontrib><creatorcontrib>Li, Miqing</creatorcontrib><creatorcontrib>Li, Sizhe</creatorcontrib><creatorcontrib>Yang, Xiaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yi</au><au>Huang, Han</au><au>Li, Miqing</au><au>Li, Sizhe</au><au>Yang, Xiaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Looking For Novelty in Search-Based Software Product Line Testing</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>48</volume><issue>7</issue><spage>2317</spage><epage>2338</epage><pages>2317-2338</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract><![CDATA[Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq1-3057853.gif"/> </inline-formula>-wise coverage. In this context, one of the primary goals is to sample, by optimizing similarity metrics using search-based algorithms, a small subset of test cases (i.e., products) as dissimilar as possible, thus potentially making more <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq2-3057853.gif"/> </inline-formula>-wise combinations covered. Prior work has shown, by means of empirical studies, the great potential of current similarity-based testing approaches. However, the rationale of this testing technique deserves a more rigorous exploration. To this end, we perform correlation analyses to investigate how similarity metrics are correlated with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq3-3057853.gif"/> </inline-formula>-wise coverage. We find that similarity metrics generally have significantly positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq4-3057853.gif"/> </inline-formula>-wise coverage. This well explains why similarity-based testing works, as the improvement on similarity metrics will potentially increase the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq5-3057853.gif"/> </inline-formula>-wise coverage. Moreover, we explore, for the first time, the use of the novelty search (NS) algorithm for similarity-based SPL testing. The algorithm rewards "novel" individuals, i.e., those being different from individuals discovered previously, and this well matches the goal of similarity-based SPL testing. We find that the novelty score used in NS has (much) stronger positive correlations with the <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq6-3057853.gif"/> </inline-formula>-wise coverage than previous approaches relying on a genetic algorithm (GA) with a similarity-based fitness function. Experimental results on 31 software product lines validate the superiority of NS over GA, as well as other state-of-the-art approaches, concerning both <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="xiang-ieq7-3057853.gif"/> </inline-formula>-wise coverage and fault detection capacity. Finally, we investigate whether it is useful to combine two satisfiability solvers when generating new individuals in NS, and how the performance of NS is affected by its key parameters. In summary, looking for novelty provides a promising way of sampling diverse test cases for SPLs.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2021.3057853</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1617-4147</orcidid><orcidid>https://orcid.org/0000-0003-2118-4825</orcidid><orcidid>https://orcid.org/0000-0002-8607-9607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-5589 |
ispartof | IEEE transactions on software engineering, 2022-07, Vol.48 (7), p.2317-2338 |
issn | 0098-5589 1939-3520 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSE_2021_3057853 |
source | IEEE Xplore (Online service) |
subjects | <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="kwd" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> <mml:math> <mml:mi>t</mml:mi> </mml:math> <inline-graphic xlink:href="xiang-ieq8-3057853.gif" xlink:type="simple"/> </inline-formula> </named-content>-wise coverage Algorithms Correlation Correlation analysis Empirical analysis Fault detection Frequency modulation Genetic algorithms Measurement novelty search Product lines product sampling Searching Similarity similarity-based testing Software Software development Software product line testing Software product lines Testing |
title | Looking For Novelty in Search-Based Software Product Line Testing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Looking%20For%20Novelty%20in%20Search-Based%20Software%20Product%20Line%20Testing&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Xiang,%20Yi&rft.date=2022-07-01&rft.volume=48&rft.issue=7&rft.spage=2317&rft.epage=2338&rft.pages=2317-2338&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2021.3057853&rft_dat=%3Cproquest_cross%3E2689806558%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-d58c785561b473f3e3f9bbb53f96a796d27a6a964fc4be69b93a3f2e9cd7764b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689806558&rft_id=info:pmid/&rft_ieee_id=9350184&rfr_iscdi=true |