Loading…

Stability Enhancement of Decentralized Inverter Control Through Wireless Communications in Microgrids

Decentralized inverter control is essential in distributed generation (DG) microgrids for low deployment/operation cost and high reliability. However, decentralized inverter control suffers from a limited system stability mainly because of the lack of communications among different inverters. In thi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2013-03, Vol.4 (1), p.321-331
Main Authors: Liang, Hao, Choi, Bong Jun, Zhuang, Weihua, Shen, Xuemin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decentralized inverter control is essential in distributed generation (DG) microgrids for low deployment/operation cost and high reliability. However, decentralized inverter control suffers from a limited system stability mainly because of the lack of communications among different inverters. In this paper, we investigate stability enhancement of the droop based decentralized inverter control in microgrids. Specifically, we propose a power sharing based control strategy which incorporates the information of the total real and reactive power generation of all DG units. The information is acquired by a wireless network (such as a WiFi, ZigBee, and/or cellular communication network) in a decentralized manner. Based on the desired power sharing of each DG unit and the acquired information of total generation, additional control terms are added to the traditional droop controller. We evaluate the performance of the proposed control strategy based on small-signal stability analysis. As timely communication may not be established for a microgrid with low-cost wireless communication devices, two kinds of analytical models are developed with respect to negligible and nonnegligible communication delays, respectively. Extensive numerical results are presented to demonstrate the system stability under the proposed control strategy with respect to different.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2012.2226064